
Why the Agile Project Manager is the Secret
Sauce for Development Projects
The Agile project manager is sometimes referred to as the “secret sauce” for software development
projects? Leo Abdala describes a recent development project at a Fortune 50 company where the
Agile PM instilled confidence with and produced a value-generating product for the client.

Agile Project
Management

PAGE 5

eMag Issue 18 - September 2014

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN ENTERPRISE SOFTWARE DEVELOPMENT

THE ROLE OF PROJECT MANAGERS IN AGILE P. 9

THE INTEGRATION OF AGILE AND THE PROJECT MANAGEMENT OFFICE P. 14

Q&A WITH ROBERT PANKOWECKI ON HIS BOOK DEVELOPERS ORIENTED PROJECT MANAGEMENT P. 17

RISK MANAGEMENT IS PROJECT MANAGEMENT FOR GROWN-UPS P. 23

SOLVING THE GORDIAN KNOT OF CHRONIC OVERCOMMITTMENT IN DEVELOPMENT ORGANIZATIONS P. 34

PROJECT MANAGEMENT IN AN AGILE WORLD P. 41

Contents

Why the Agile Project Manager is the Secret Sauce for
Development Projects Page 5
Why is the Agile project manager sometimes referred to as the “secret sauce” for software development
projects? Leo Abdala describes a recent development project at a Fortune 50 company where the Agile PM
instilled confidence with and produced a value-generating product for the client.

The Role of Project Managers in Agile Page 9
This article first explains the role of project manager in general in any industry and then tries to map it with the
role of coach/facilitator in Agile.

The Integration of Agile and the Project Management Office Page 14
Agile and the Project Management Office (PMO) are no longer considered diametrically opposed phenomena.
With an ever-changing business landscape, organizations are required to adopt more nimble approaches. In
many cases, Agile is more suitable within the PMO than people think.

Q&A with Robert Pankowecki on his book Developers Oriented Project
Management Page 17
Self-organized teams manage their work, the processes that they use and the way that they work together
as a team and with their stakeholders. Robert Pankowecki is writing a book on Developers Oriented Project
Management which aims to help programmers, product owners, project managers and agile company owners
to improve their project management practices and move towards more flat organizations.

Risk Management Is Project Management for Grown-Ups Page 23
Tim Lister presents the advantages—and the dangers—of practicing risk management in an adult-like fashion,
offering a process for tailoring an organization and discussing how an organization can grow up.

Solving the Gordian Knot of Chronic Overcommittment in Development
Organizations Page 34
Why do we promise more than we can deliver? Why do we say yes when we are already too busy? Chronic
Overcommitment is a pervasive problem in the IT industry. In this article we take a look at the behaviors that
drive over commitment and the dynamics at play in your organization the make it a difficult problem to solve.
Finally, we offer some advice to those who suffer from this affliction.

Project Management in an Agile World Page 41
Tony Willoughby discusses project manager’s role in an agile team focusing on resourcing, cost control, high-
level scope management, risk management and wider communication with business stakeholders.

Page 3

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

A Letter from the Editor

Project management is a crucial and often
maligned discipline. In the software world, project
management is mainly about coordinating the efforts
of many people to achieve common goals. It has been
likened to herding cats – a thankless undertaking
that seems to engender little or no respect from the
teams who are being managed.

The project manager needs to understand the
multiple constraints under which projects operate,
far more than the triple constraint of scope, time, and
money, which is the simplistic view of the discipline.

They are responsible for balancing the needs of the
organisation with the ability of the team(s) to deliver,
coordinating multiple conflicting stakeholders, and
shepherding the successful delivery of a product
that delivers the desired business benefits within a
realistic and achievable timescale for a realistic and
viable cost.

Project management is about trying to predict the
unpredictable, making promises about an uncertain
future, and having the skills and knowledge to know
when and how to adapt plans to the evolving reality
that is the complex world of software engineering.

This eMag looks at project management in agile
projects, challenging the myth of “we don’t need
project management in agile projects.”

Leonardo Abdala asserts that the agile project
manager is the secret sauce for development

projects, and explains why he feels this is the case.
He looks at the activities of a project manager in
agile environments and discusses how they add
value, especially as the project ecosystem becomes
more complicated, with multiple streams of work
and distributed teams whose efforts need to be
coordinated.

Vinay Aggarwal discusses the role of project
managers in agile. He addresses five aspects that
indicate a need for project management, shows how
agile approaches address parts of the problem, and
suggests where and how project managers can add
value to the development process. He tackles three
common myths about managers and management in
agile projects and shows the flaws in the arguments
often put forward for the removal of project
management on agile projects.

Peter Schmidt tackles the integration of agile into the
project-management office. Often seen as a bastion
of cumbersome process and heavyweight compliance
rules, the project-management office is changing,
becoming more nimble, supporting organisational
agility and taking a leadership role in new ways
of working. Peter says “The redefined project
management office has begun to integrate itself
into this approach by providing resource support
where necessary, by acting in the role of change
enablement, and by clearing roadblocks in the
progress of projects and programs by incorporating
elements of the servant-leadership model into day
to-day operations.”

Shane Hastie is the Chief Knowledge Engineer for Software Education

(www.softed.com) a training and consulting company working in Australia, New

Zealand and around the world. Since first using XP in 2000 Shane’s been passionate

about helping organisations and teams adopt Agile practices. Shane leads Software

Education’s Agile Practice, offering training, consulting, mentoring and support for

organisations and teams working to improve their project outcomes.In 2011 Shane

was elected as a Director of the Agile Alliance (www.agilealliance.org)

Page 4

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Robert Pankowecki answers questions about his
book Developers Oriented Project Management,
which aims to help programmers, product owners,
project managers, and agile companies improve their
project-management practices and move towards
flatter organization. He talks about how many of
the traditional tasks of project management can
be undertaken by team members, freeing project
managers to view a bigger picture and focus on
removing the organisational obstacles that so often
get in the way of effective outcomes.

In his talk at QCon London in 2014, Tim Lister
examines the need for risk management on any
type of project and shows how many of the agile
techniques are about reducing and mitigating risk.
He discussed what risk management is, what it isn’t,
and how project-management approaches need to
incorporate risk management at their very core.

Rolf Häsänen and Morgan Ahlström tackle the
endemic problem of over-commitment – promising
too much and consistently failing to deliver. They
explore the many reasons at many levels why teams

and individuals become overcommitted and provide
some concrete suggestions about how to manage the
flow of work to achieve more consistency in results.

Finally, in his presentation at Agile Cambridge 2012,
Tony Willoughby talked about the common roles on
an agile/Scrum team and how the project manager
is conspicuously missing. He identifies the activities
and tasks that are left out of the Scrum framework
and shows how a project manager fills the gaps,
especially in organisations whose structure doesn’t
yet accommodate an agile framework and where
third parties are involved in delivery of the product.

He explains how the traditional project-management
responsibilities need to change and how some
aspects of the role stay the same.

In bringing these articles together, we hope to
provide you with a view of what project management
on agile projects can become and show where
the real value lies in having someone take the
responsibility for managing the project.

Page 5

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Why the Agile Project Manager Is the
Secret Sauce for Development Projects

According to the out-of-the-box Scrum framework,
there is no agile project manager (PM) role. There
are other agile methodologies, such as feature-
driven development (FDD), that rely on the role
of a PM but the PM role is reduced to someone
responsible for the administrative aspects of the
project, and not necessarily for helping to coordinate
the development team and their activities or dealing
with resource issues (and also far from the complete
traditional PM described in A Guide to the Project
Management Body of Knowledge). For example,
according to FDD, these are responsibilities of the
development manager, not necessarily the PM. An
agile PM goes beyond the tactical PM role, entering
into project coordination and strategy. The agile PM
takes the multidisciplinary skills of the traditional PM
and brings a unique familiarity with the fast-paced,
change-embracing context of agile projects and
frameworks.

The agile PM can be better understood as a unique
professional with a very particular set of skills that
allows him or her to own part of the responsibilities
of two or more roles at the same time, as needed.
In the Scrum framework, these roles can include
client product owner (PO) and Scrum master, i.e. in
one project the agile PM can act more as a Scrum
master then switch to a stronger PO role in the next
engagement, according to each project’s needs – not
fully replacing but instead complementing the job of
the Scrum master or PO. The agile PM uses project-
management expertise to assist both sides (client PO
and Scrum master plus development team), filling in

the gaps while always aiming for the best outcome
for the project and walking the extra mile.

During the course of an agile software project,
the Scrum master is typically viewed as the agile
PO, who makes sure that the team is using the
Scrum and agile frameworks correctly. Yet when
considering near-shore projects, the leadership role
is most beneficial when it is held by more than one
person because most of the time the development
team and PO are based in different countries, and
working with leaders in each location can ensure
the parties stay on track to meet the project’s goals.
For example, a Scrum master and an agile PM can
work collaboratively to lead a project and direct
the geographically distant teams, with the agile
PM taking ownership of some of the tasks that are
typically owned by the business partner to ensure
the project moves along smoothly when the client is
not physically present to meet with the development
team. By taking on these responsibilities on behalf
of the client, the agile PM becomes critical in
ensuring the progress and success of a near-shore
development project.

The presence of an agile PM also works well with
colocated groups. However, because distributed
teams do not always benefit from osmotic
communication since not everyone is sitting in the
same room, having the agile PM helping to fill in this
communication gap is crucial for the success of the
initiative.

by Leonardo Abdala

http://www.infoq.com/author/Leonardo-Abdala

Page 6

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Tasks that the agile PM can be responsible for include
(but are not limited to): allocating team members
(staffing); providing mentoring and coaching;
coordinating the development of the product
backlog with the PO and the sprint backlog creation
process with the project team; developing, executing
and monitoring the project’s schedule cost/budget;
project cash flow/invoicing; communications and risk
response plans and procurement management.

Specifically on the PO side, the agile PM can be
responsible for holding the kickoff meetings and
also for scheduling and facilitating other project
meetings as needed. In this situation, the agile PM
will take charge of preparing and communicating
written and verbal status reports for the team
members and stakeholders, as well as for updating
and archiving the project documentation as needed
(e.g. if a company’s PMO requires certain documents
to be generated for the project to be compliant,
there will be stories in the backlog for creating such
documents).

The agile PM is capable of assisting the client
PO in properly conveying the client vision to the
development team (e.g. by creating/maintaining a
prioritized product backlog using value-
engineering techniques) while helping the Scrum
master ensure that the project has someone playing
the appropriate PO role, and that the Agile process is
being followed on the client side and not only within
the development team.

An agile PM at work
To fully understand the job of the agile PM, consider
a recent project for a Fortune 50 pharmaceutical
company. The company undertook a software-
development and migration initiative with a near-
shore development team consisting of a Scrum
master and the team responsible for burning the
backlog items towards the sprint goals. The team
included three strong programmers with different
backgrounds (coding, Web designing, database
knowledge, etc.), one tester, and one software
architect. In addition to the remote development
team, the PO and the agile PM, both onsite, were also
part of the core project team. The project lasted 66
days and consisted of five cycles.

The project began with a four-day warm up that
the team referred to as Sprint 0. During this phase,
the team reviewed the requirements created by
the client and established the estimated timeline

while discussing and outlining the application’s
infrastructure. One goal of Sprint 0 was to include
the client in discussions to clarify questions
associated with the business rules so that the client,
the agile PM, and the development team were on the
same page.

While working through the 16-day sprints, the agile
PM played the critical role of facilitating constant
communications, including arranging daily meetings
with the team, morning meetings with the client, and
checking the backlog to ensure on-time completion
of the project segments at the theme level, The
agile PM also coached the Scrum master to try to
anticipate unknown roadblocks. Traditional Scrum
practitioners believe that the development team is
capable of tracking the backlog and bringing tasks
to completion. However, this near-shore team had
learned from experience that with geographical
distance separating the client and team, the process
is better streamlined with a manager in place to track
all tasks.

It’s important to mention that the agile PM did not
have assign specific tasks during the project, as the
development the team was self-organized enough to
handle that. For example, the developers did not feel
comfortable handling some of the complex backlog
tasks alone and they themselves requested the
software architect’s assistance. Also, even though
the developers were performing tasks besides
coding, such as unit tests and system and regression
tests (testing each other’s code), they naturally
asked the tester to assist them in these activities.
This scenario strengthened the buy-in of the team
members and reinforced the “power to the edge”,
which is aimed at achieving organizational agility.

The first day of each sprint included planning
sessions, during which the development team
worked on the breakdown of the user stories (from
the product backlog) into tasks, estimating the hours
required for them and assigning team members to
each task (creation of the sprint backlog). The client
worked with the agile PM and development team to
discuss and define each sprint goal, which was then
written on the whiteboard in the room where the
development team worked.

During the next 14 days, the development
team moved forward with implementation and
participation in daily 15-minute stand-up Scrum
meetings every morning. The agile PM, through a

Page 7

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

webcam, participated in the review of what was done
the day before and what would be done that day,
and communicated any impediments to the sprint
goal. The agile PM also participated in a separate
daily 30-minute call with the PO to discuss and find
solutions for any impediments discussed in the daily
meeting. The last day of each sprint was marked by a
one-hour demonstration session. The development
team presented the working functionalities
developed during the sprint to the client and any
other stakeholders within the organization.

Bridging geographical boundaries and
enabling communication
With the development team and client in different
places (in this case, the development team was in
Brazil and the PO in New Jersey), final responsibility
for each sprint fell to the agile PM. It’s worthwhile to
note that the agile PM’s job was made easier during
this project because the development team was in a
near-shore location, only one time zone away from
the client, as opposed to the eight-plus-hour time
difference often associated with offshore projects.
To better facilitate communication, the teams set up
several Live Meeting and GoToMeeting sessions and
used a 1-800 conference number provided by the
client organization.

The constant communication facilitated by
the agile PM complemented the work style of
the development team. A high-performance
team, the developers placed priority on regular
communication with the client, ensuring that both
parties were focused on the most current business
goals throughout the duration of the project.
Combining the communication priorities of the high-
performance team and the strong presence of the
agile PM as the go-between for the two parties, the
near-shore team was able to stay on track through
sprints, delivering projects on time and within
desired specifications.

Learning from past sprints and building
reputations
Throughout the project, the team held retrospective
sessions at the end of each sprint, led by the agile
PM, who was in charge of coaching the Scrum
master and the development team. The goal of these
sessions was to uncover ways that they could work
better together, with a focus on what specifically
went right and wrong during each sprint. In the
Scrum framework, learning from the project is just as
important as delivering the final product.

As a result of these sessions, the development team
solidified its reputation with the client, providing
a framework for exemplary work processes and
serving as a benchmark for other teams that
were working with the client on other software-
development initiatives. In addition, due to the
constant retrospective views into each sprint, the
development team needed less time to prove its case
to the client prior to making a decision, which led to
less overhead – and reducing overhead is critical in a
highly competitive development market.

As the development team built its reputation with
the client, it also built team morale, which is very
important for agile and high-performance teams. The
team began to feel more confident in its work and in
its ability to try new ways to perform certain tasks,
including suggesting improvement in the business
processes related to building the software.

Realizing success
Beyond satisfying the client, the development team
also achieved internal successes. Through Scrum
and following the lead of the agile PM, the team
spent less time behind the curtains developing, and
getting faster feedback on its work. It was able to
focus on the most important elements of the project,
placing priority on delivering the parts that brought
business value. With the short, daily interactions,
the client knew what was going to be delivered and
when, and had confidence that the result would
provide value. The agile PM also assisted the PO in
preparing executive reports for upper management,
to communicate the project value.

Looking back at this project, the development team
realized that its success would likely have not been
possible without the agile PM to lead the process.
Without constant communication, the cost of the
project would have increased because issues would
have not been detected immediately, leading to
larger problems, rework, and project delays. Without
the agile PM ensuring that the development team
and client were focused on the same business goals,
the two parties could have ended up on divergent
paths, leading to the team delivering a less-effective
product that did not meet customer needs.

Above all, the use of Scrum and the presence of
the agile PM ensured transparency during the
project. The stakeholders were able to track the
project on a daily basis and valued the ability of
the team to rapidly react to necessary changes to

Page 8

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

circumvent potentially impassible impediments. The
transparency served to increase the confidence of
the client in the development team. This combination
of a high-performance team and agile PM instilled
confidence and produced a truly value-generating
product for the client.

ABOUT THE AUTHOR
Leonardo Abdala is a project manager

responsible for agile projects involving

Amazon Cloud (AWS), Microsoft, and

Drupal, as well as mobile apps and

mobile-friendly websites developed

by Ci&T for international clients,

including a Fortune 50 pharmaceutical

company, a Fortune 200 marketing and

advertising corporation, and a Fortune

500 organization in the healthcare

LOB. He is responsible for leading

Ci&T’s geographically dispersed

development and creative teams based

in Brazil, Argentina, and China. He has

been working with agile for more than

five years and with the PMI framework

for more than nine years. Leonardo

holds several Microsoft certifications

(MCP, MCTS, MCPD, MCITP), and

is a Scrum Alliance Certified Scrum

Master (CSM) and Certified Scrum

Professional (CSP) and a PMI Project

Management Professional (PMP). Leo

is also a college professor (currently

on leave) in Belo Horizonte, Brazil.

He holds a bachelor’s of science and a

post-graduate degree in management

information systems.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/agile-project-manager-role

Page 9

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

The Role of Project Managers in Agile

Agile books usually do not talk of the role of manager but of a coach/facilitator. This
article first explains the role of project manager in general in any industry and then
tries to map it to the role of coach/facilitator in agile. It also tries to widen the scope
of being a coach/facilitator.

Before we discuss the role of project manager in
agile, let’s first see why managers are required at all
in any industry.

1) People are not perfect
Working with human minds is very complex. No two
people in the world think alike. Styles of work are as
individual as fingerprints but business goals remain
one and the same for all stakeholders. “People” in the
subtitle above means all the stakeholders involved
in the project, like project team members, business
users, and management and financiers. People must
be managed to:

Keep them aligned with project goals and fine-tune
their style of work.

Bring the best out of them.

Help them stay focused and motivated.

If everyone in a project were perfect, no project in
any industry would ever fail and there would be no
need of any software-development methodology,
be it waterfall or agile. Perfect people would always
produce a perfect project.

2) Change must be controlled
Change is the only constant in life. Everything
can change, be it tangible (e.g. requirements) or
intangible (e.g. people).

Requirements are like a wind that always shifts.

People’s experience and exposure change day to day.
My level of experience tomorrow will have grown by
one day compared to today’s. This can alter my:

• Aspirations
• Skills
• Commitment
• Attitude
• Any other soft or hard skill

Business is dynamic and the market is changing
every minute. With this, customer expectations may
change.

With technological change and innovation happening
every minute, the project environment, architecture
and design, and development processes may change
quickly.

by Vinay Aggarwal

http://www.infoq.com/author/Vinay-Aggarwal

Page 10

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Resource movement is inevitable in long projects.

In terms of mathematics, planning is a function of
time. However perfect your planning at program
level, project level, or sprint level, it may lose its
validity tomorrow. Every attribute in planning at
any level has an expiry date that can be as close as
tomorrow. When everything is changing constantly
and unexpectedly, how can yesterday’s planning be
valid tomorrow?

In this context, role of manager is:

To keep the people continuously motivated and
engaged with the project.

Working out resource movement with a realistic
transition plan with minimum impact on business.

Keep an eye on the plan, let the plan evolve with
time and accordingly take extra steps to manage the
impact and change.

Since team members and plan – both are dynamic,
keep communicating to stakeholders about impact
and mitigation.

3) Communication causes gaps and
conflicts
Communication is root cause of all happiness – and
of all conflicts.

It’s an art that requires diligence and thought. How
will the audience perceive this message? Will it
offend anyone? Does it have the necessary weight
to strongly communicate the message? Few people
possess the skills required.

People in development are generally too focused in
technology and so ignore, knowingly or unknowingly,
this fine art.

A project manager controls the communication to
large extent. He or she should also delegate some
responsibilities to other team members as and when
they are comfortable with it.

4) Processes are not perfect
No process is ideal. Software-development
methodology be it agile or waterfall has gaps. No
ideal process piously defines customer-supplier
relations and even if one existed, it would be almost
impossible to strictly carry it out.

Even if a process works absolutely fine with one
person or in one situation, it may fail terribly in a
different context.

A manager is expected to let the team focus on
results and not worry too much about process.
The saying “Processes are for us, we are not for
processes” means that following process is not the
goal but just a tool to get there. The manager along
with the team decides what processes work best for
this project and apply them.

5) Processes may not be implemented
properly
Process implementation always means more work,
more diligence, and more tracking, which any
development team in general tends to avoid. Many
people consider process overhead an evil.

It’s rare that a particular process in a project has
been implemented 100% faithfully for the entire
duration of the project.

The manager should intervene if any process
violation may lead to indiscipline and adversely
impacting the project, and ensure a high degree of
compliance for all good practices.

If none of the above five reasons existed then no
industry would ever need managers. Unfortunately,
all five do exist in every industry, every company,
every project, and every sprint.

None of the five reasons is technical in nature
and all are best addressed by the application of
management practices. The person who brings
management practices into a project is called a
manager in the corporate world. Managers have no
magic to make the above perfect but they help the
people and processes to monitor the project, to fine-
tune, and to apply lateral thinking and management
concepts, all to find creative ways to make sure that
those five reasons do not impact the business goals.
Investors and shareholders must get good return
on investment in any project so someone has to
balance these things and help achieve the business
objectives.

A subset of this role is described as coach/facilitator
in agile terminology.

Agile coined a new term, the “self-organizing team”.
I am a big fan of the self-organizing team. It works

Page 11

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

well, especially in those cultures where people
display high standards of responsibility and duty
in public life. These people carry their standards
to work and become perfect members of the self-
organizing team. To have every employee working
in self-organizing mode is the dream of all agile
company management.

But human beings are unique and not everyone
can perfectly fit into a self-organizing team. Not
every doctor becomes a surgeon or specialist but
every practicing M.D. is useful to society. Similarly,
it’s impossible to expect everyone to work in a
self-organizing manner, though individuals who
do not self-organize can still contribute a lot if
handled differently. This is where the role of project
manager becomes useful, applying a little or a lot of
supervision (depending upon individual) can extract
the best work from any team member. Agile uses the
term “coach/facilitator” for this kind of role.

Again, this role can work fine even when people
deviate a little from self-organization. In following
three scenarios, a coach/facilitator may have to
widen his scope.

People who deviate too much from being self-
organizing because they are highly unstructured,
highly unfocused, too emotional, etc.People’s soft
skills do not align with business needs. They are not
proactive, are afraid of speaking, have poor time
management, etc. Lack of these soft skills would
prevent potential from translating into performance.

People participate in corporate evils like jealousy,
withholding knowledge, sycophancy, etc. These
people can still be productive provided a strong
manager (not coach) controls them with constant
monitoring and nips these evils before they start to
impact team dynamics.

We should appreciate all professionals but the way
to handle and bring the best out of an individual
differs for everyone. There is no one rule of thumb
that can be applied to everyone. This is something
organizations need to grasp. There are very good
techies in all countries who can be very good
contributors but may not be self-organizing. This is
where a coach/facilitator would move more towards
the traditional role of project manager. These
workers may need guidance and supervision and may
be missing the soft skills. The limited scope of agile
coach/facilitator would make it a nightmare to align

these kinds of people with agile and get the work
done.

I have full respect for all kinds of people and strongly
believe that this kind can be great contributors, but
you need to widen the scope of coach and give him
some kind of authority to enforce dos and don’ts.
This is where the role of project manager becomes
useful. The following table demonstrates a few other
areas where a project manager can have impact.

A project manager can extend his or her role beyond
coach/facilitator if things are going wrong. He or she
can control those team members who are not agile
by nature or by intentions. I would like to address
three common myths prevalent in the industry. These
myths are more prominent in the context of agile.

Myth #1: Managers have magic pills
Dealing with human minds is complex and most
challenging. There is no science; it’s pure art.
Whatever you do, there will still be people who are
unmanageable and changes that are uncontrollable.
A good manager can:

Completely solve 50% of problemsPartially solve
15% of problemsMake 15% of problems appear to
have no impact or be out of scope by making them
explicit with the help of communicationAccept that
20% of the problems will always remain because
some people or some changes in certain contexts
can never be managedThe percentages are only an
expression of my experience and are not based on
any scientific study or research.

Managers are also human beings who are as
imperfect as anyone else. Management is a different
concept with holistic approach. It’s a different
profession altogether, one that is designed to
manage imperfect people and processes. People with
experience and study of the subject can bring a lot of
value.

Myth #2: Managers always curb freedom
This may be true for some bully managers but in
reality a good manager creates an environment that
enhances performance, thereby bringing the best
out of people. A manager with experience and vision
may temporarily curb a team’s freedom within the
context of an objective that eventually benefits them.
Sometimes, people cannot visualize that far ahead
because of a lack of experience, extreme comfort,
arrogance, or other reasons.

Page 12

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Reason How agile helps Where agile does not help but a
project manager can

Remarks

People are not
perfect

Daily status
updates keeps
focus and
a product
owner keeps
requirements
aligned with
business.

Is focus is in right direction?
Does product owner change goals
every sprint?
Is accountability shared? Does
anyone think people with more
experience or more knowledge
are more accountable?
Are people hiding incompetency
on the name of agile?
Is the team really self-organizing?
Are people finding outward
reasons as an excuse for not
improving?
Is one individual trying to take
all the credit thereby disturbing
team dynamics?
If someone is holding knowledge
and not sharing with team?

A manager with lateral thinking can
devise innovative ways to manage
imperfections.
A coach can explain how to do things
in the right manner but what if people
don’t follow? For example, what if a
team does not take feedback from the
product owner after the demo? Is it
acceptable or must it be enforced?

Change must be
controlled

Agile
welcomes new
requirements at
the beginning of
each sprint and
the Scrum master
prevents scope
creep during the
sprint.

Is the Scrum master playing his
role properly?Is the tester doing
his job at right time?
Are people’s soft skills and
commitment changing?Has the
customer stopped believing in
agile? Is customer expecting
unrealistic results?

Agile takes care of change in priority
of requirements.
A product owner using his influence
can add a story even in the middle of
the sprint. What if the team does not
know how to handle it?

Intangible changes cannot be
addressed by any methodology.

Communication
causes gaps and
conflicts

Agile provides
opportunity to
communicate
every day in
stand-ups.
Agile creates a
platform that
a worker can
use to speak
his mind during
retrospectives.

Is the team really raising
impediments?Is the team
proactive in communication?
Does the audience understand
all communication?Are there
language or cultural barriers to
communication?Is distributed
communication a bottleneck? Is
user experience good?Is all email
replied to per expectation with
good quality?

Corporate communication is very
different from knowing programming
and is difficult.
Management studies explain the fine
art of communication.

Soft skills cannot be addressed by any
process.

Processes are
not perfect

Agile helps
in software
development.

Every methodology has its
limitations. It’s people who have
to make the project a success.

Bad agile is worse than no agile.

Processes
may not be
implemented
properly

Agile is a
process whose
implementation
depends on
people.

Are people following
processes?Can processes be
improved?What subset of
processes is appropriate for my
project?Where are exceptions
and when it is okay to deviate
from process?

Is the team doing excessive pair
programming?When is a best practice
really the best practice for my project?

Page 13

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

It may also be the case that incompetent people fear
being exposed and hence they feel that managers
curb freedom. People who have a zest to perform
should raise their personal bar, and use their
manager’s experience to plug gaps. They can work
closely wit the manager, eventually taking more
responsibility and letting the manager attend to
other duties.

Myth#3: A manager should not have
authority
Some countries and cultures by default inculcate
responsibilities and duties in public life. The
authority is not required in these cases; a coach/
facilitator would work perfectly fine in these kinds
of environments. The concept of authority is more
relevant in societies that are still evolving and have
yet to reach sufficient maturity.

In order to control the five reasons mentioned at
the beginning of this article, any manager has to
have authority. A manager without authority would
be like a car without fuel. Psychological studies
have revealed that the human mind (especially in
adulthood) is inflexible, like hard iron. In order to
shape the iron into a beautiful vessel, you need
powerful tools – and for people, you need authority.
The moment the people of the world all become
diligent, responsible, and highly self-organizing is
the moment all management institutes would close
globally.

Conclusion
Agile is a software-development methodology that
helps iron out some of the wrinkles of the traditional
waterfall process. But agile is not a trump card to
play for guaranteed success of a project. It’s the
people who have to work and perform and people are
always a challenge to deal with.

The world is full of problems and imperfections.
Management is a profession that helps people use
processes to achieve business or professional goals
despite working within constraints. No methodology
can make a manager redundant until and unless
people reach perfection. When there are people,
there are problems. And every process features
deviation. To handle people and problems and
control deviation or changes, every project has to
ask for help from the management profession. Teams
may resist t.If the role ofisn’t enoughcan take over

At the same time, managers are also human beings.
They belong to the same world of imperfections.
Management decisions may fail. Stakeholders must
accept this.

ABOUT THE AUTHOR
Vinay Aggarwal is a delivery manager with Xebia

IT Architects, India. He has 11 years of experience

in the IT industry. He holds bachelor’s degree in

engineering and is a PMI-certified project manager

(PMP) and Certified Scrum Master (SCM). He has

worked in companies like IBM and Accenture. He

has much experience within both waterfall and

agile (Scrum) methodologies. He believes in lateral

thinking and applies management concepts to

handle various delivery challenges.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/project-manager-role

Page 14

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

The Integration of Agile and the
Project-Management Office

Introduction
In the early days of its adoption, the agile
methodology seemed to be diametrically opposed
to the process-driven project-management office
(PMO), which most often corresponded to a
waterfall-style planning-and-delivery methodology.
Agile was a more nimble approach to project
management while waterfall stipulated a rigid,
document-driven structure. The same is true today,
but in the past few years, a growing partnership
between agile practitioners and the PMO has
emerged. The two are no longer mutually exclusive.
In fact, the discipline of project management has
evolved to actively include both methodologies in the
enterprise.

Organizations often see a need for a blended
approach to project delivery, moving away from the
traditional project management to a hybrid agile-
waterfall methodology. Selecting certain elements
from the agile approach such as writing story-based
requirements, holding daily stand-up meetings,
or targeting shorter development cycles allows
organizations to alter their original milestone-driven
approach to build in more planning and feedback
loops, which in turn gives them more flexibility
to react to changes in project requirements. The
redefined PMO has begun to integrate itself into
this approach by providing resource support where
necessary, by acting to enable change, and by
clearing roadblocks in the progress of projects and
programs by incorporating elements of the servant-
leadership model into day-to-day operations.

Where agile makes sense
The agile approach is best suited for projects of an
experimental nature incorporating new or untried
technology, in which change or refinement of the
requirements will be a necessary aspect of the
defined product release. Using agile for bridge
construction, for instance, makes little sense since
the requirements are clear. In order for the bridge
to fulfill its function, a set list of prerequisites is
needed from the outset of the project. Last-minute
changes simply aren’t in the plan. Building a software
application, on the other hand, frequently benefits
from using the agile approach since the desired
end-state system may be known, but the details of
the technical solution will have to be determined
using a sequence of tightly defined iterative loops, or
possibly parallel project teams working in tandem on
a variety of subsystems.

by Peter Schmidt

http://www.infoq.com/author/Peter-Schmidt

Page 15

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

It would be incorrect to claim that agile is simply a
looser, less disciplined way of running projects. In
fact, on the program level, agile teams are even more
tightly controlled since the progress of one or more
projects is monitored and actively communicated in
real time. Unlike the traditional approaches in which
reporting is done on perhaps a monthly basis, agile
reporting is in fact continuous and runs in tandem
with the six defined levels of agile planning.

Where the PMO can play a part
ESI research indicates that agile projects tend to be
large and complex, emphasizing a particular need
for specialist resource support at critical points in
the project, a coordination task that the PMO can
naturally fulfill. In fact, in terms of planning, the PMO
is heavily involved with the top three levels of agile
project planning (strategic, portfolio, and project
planning), while the project team itself provides the
basis for the release, iteration, and daily planning
cycles. The illustration above depicts the top-down
and bottom-up interplay of these planning activities.

According to a recent ESI survey on the global state
of the PMO, 80% of all agile projects were medium-
to-large in scale with a medium-to-high risk profile.
Over half of those surveyed said their agile projects
were complex in nature. At present, the PMO’s
major role in agile project management appears to
center around coaching and mentoring-support for
agile teams. The PMO has some way to go in most
organizations before fully integrating itself in the
agile landscape and will most likely take on increasing
importance as a resource warehouse, inter-project
coordinator, and translator of strategic direction into
actionable project objectives.

The research
According to a PMI/Forrester survey in 2011,
about three out of four PMOs still favor A Guide
to the Project Management Body of Knowledge
(PMBOK) as their primary methodology. Reflecting
traditional planning practices, the PMBOK provides
an adaptable framework for a wide variety of project
needs. Nonetheless, it is not nearly as flexible as
agile. The 2011 survey also showed that only one out
of three PMOs fully supports agile, Scrum, or lean
practices.

ESI’s global PMO study from 2013 revealed that
42% claimed their organization delivers projects
using agile methods while 40% claimed they do not.
It appears agile usage is on the rise, even if it is not

as pervasive as many think. All told only 9% claimed
they used agile in over half their projects. Agile is
clearly not a silver bullet for all projects.

Not surprisingly, agile projects are typically IT-
related in nature with an even distribution of
projects among the entire enterprise (38%), division
(24%), or department (29%). In the Middle East and
Africa (35%), agile was used more commonly for
process-improvement projects as compared to the
global mean (13%).

In many cases, the PMO acts as a centralized
coordinating function for a cluster of agile projects.
The management of a group of projects under agile
offers improved risk management due the nature
of its real-time reporting, offering better insight
into the project’s status than traditional project-
management methods.

The PMO often aggregates information such as
the velocity and burn rate of each project, thereby
treating complex projects with many sub-projects
like an entire program. Because of its position as a
supervising and coordinating body, the PMO can
reallocate resources as necessary in a nimble, agile
fashion. By helping to determine what the team
needs, the PMO acts as a partner instead of being
viewed as an executive body with little idea as to
what is happening on the ground. In this way, the
PMO can function as a go-to resource that points
teams in the right direction, gathers resources,
and brings in specialists as required. The PMO has
evolved into a body that orchestrates just-in-time
management of critical resources that it can shift
between projects, thereby taking a specific agile
approach to its resource allocation.

Interdependencies between projects are a focal
point for the PMO. Whether for an agile or more
traditional project, the PMO is responsible for

http://www.esi-intl.co.uk/resource_centre/white_papers/progman/pmo_survey_2013.asp

Page 16

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

program and portfolio cost management and
planning. It acts as the financial intermediary and
financial buffer, setting aside necessary reserves to
cover potential risks.

Hybrid projects such as the US Coast Guard’s
Response Boat-Medium development program
represent a great example of the concert between
agile and waterfall. While the hull of the ship was
built based upon a set of fixed requirements with
a traditional project-management approach, the
onboard electronic systems were developed using
agile approaches. This tactic helped in saving
development time and cost as the parallel approach
to the sub-projects within the overall program led
to faster overall results in the development of this
vessel.

The solution
If agile is so essential for certain types of projects,
how can the PMO optimize its support?

Formalizing industry practices such as certifications
that reflect the increasing need for agile skill sets is
one step toward bringing the traditional PMO and
agile practitioners together. Industry standards have
been raised to recognize the different and somewhat
higher skill sets that an agile project requires. By
the beginning of 2013, the Project Management
Institute (PMI) had granted over 2,000 agile project-
management certifications (PMI-ACP) in the 18
months since it had first introduced the program,
illustrating the general recognition that some
specialized form of training and certification was
needed across all communities of the PMI.

Another PMI report, The High Cost of Low
Performance, indicates that high-performing
organizations provide well-structured, consistent
training opportunities for project managers, which
directly and positively impact project success. In
terms of on-time, on-budget, within-scope project
delivery, the success rate of those organizations
surveyed that offered professional development for
its project-management professionals far exceeded
that of counterparts who did not provide such
learning opportunities. As the agile PMP becomes
more prevalent, we predict PMOs will become more
involved in ensuring project managers receive the
training they need in this area too.

The PMO must also show a willingness to forfeit
some level of control by stepping out of the way of

the agile team’s path. Lean project management
requires a more hands-off approach than more
traditional PMOs are accustomed to. A give and take
needs to take place in order for both agile teams and
the PMOs that support them to work together.

Summary
In the end, agile teams and PMOs need one another
more than ever. Although they may work at a
different operational focus from one another, they
can learn to collaborate if they keep the successful
delivery of working products by means of the
project-delivery teams in mind. When both parties
adopt innovative communication styles, they can
overcome enormous roadblocks. Recognizing the
immense value of transparency and access to outside
resources can contribute greatly to the agile team’s
acceptance of the PMO itself. In addition, the PMO
must recognize its critical place as a change agent
and strategic enabler in the overall scheme of things.
It cannot be all things to all people, and most every
enterprise will need to develop a unique definition
of how the PMO will add the greatest value to the
successful delivery of products and projects. Finally,
the PMO must remain current on evolving best
practices in the industry to stay on top of what is
needed to deliver successful projects today and into
the future.

Agile and the PMO can indeed coexist. With the
right mix, they can enrich each other’s existence to
maximize their respective value to the enterprise
without pulling each other down in the mire of
conflicting priorities.

ABOUT THE AUTHOR
Peter Schmidt, PMP, ACP, CPL, services

director at ESI International, has over 20

years of project and program-management

experience in commercial, government, and

international projects. His high-level expertise

centers on agile project management, project

portfolio management, planning, development

and financing. He brings operational and

global consulting expertise that spans a broad

range of functional and technology areas in

such verticals as IT, energy, finance, housing,

transportation, and communication.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.esi-intl.co.uk/
http://www.infoq.com/articles/agile-integrate-pmo/

Page 17

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Q&A with Robert Pankowecki on His Book
Developers Oriented Project Management

Self-organized teams lie at the heart of agile software development.

To self-organize, team members have to manage their work, the processes that they
use, and the way that they work together as a team and with their stakeholders.
Robert Pankowecki is writing the book on
Developers Oriented Project Management, which
aims to help programmers, product owners, project
managers, and agile company owners to improve
their project management practices and move
towards more flat organizations.

You can download a sample of this book from
Leanpub.

InfoQ interviewed Robert about planning activities,
differences between developers and project
managers, building relationships with customers, and
improving communication in teams and between the
teams and their stakeholders.

InfoQ: What made you decide to write a book on
developer-oriented project management?

Robert: Initially, we started writing the book to
help remote teams. But over time, we realized that
many of the practices could be beneficial to any
kind of programmer team, including a stationary
one. Many of our friends from other agencies were
interested in how we work; our potential customers
also wanted to know it. Even in our own team, some
of the strategies were born and used in one project,
but the knowledge had not moved into the other
projects yet. So the book is about strategies that are

working for us, that we experimented with and found
beneficial.

I hear from other programmers that they go to work,
get a big task, and spend two weeks implementing
it. We wanted to show and document that there is
other way to work. And by showing and emphasizing
the benefits, we want to give them something that
they can propose in their current work environment
– small changes to push from bottom up. But this
book is not only for programmers. It is also for
product owners, team leaders, and even project
managers. They can push for the same changes but
for their own benefits. After all, in the end, we all
want the same thing. Working software, delivered
continuously, that can react on daily basis to ongoing
changes in the world.

InfoQ: Where does project management by
developers differ from that done by project
managers?

Robert: I believe that when programmers collectively
deal with project-management activities, the result is
much better transparency. As programmers, we are
accustomed to looking at code that is stored in code
repository like Git. The code is created and modified
incrementally, and by looking into history of commits,

by Ben Linders

http://blog.arkency.com/developers-oriented-project-management/
http://blog.arkency.com/developers-oriented-project-management/
http://samples.leanpub.com/developers-oriented-project-management-sample.pdf
http://www.infoq.com/author/Ben-Linders

Page 18

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

we can often see the process of creating a workable
solution.

Project-management activities when done by project
manager are however often sealed off from the rest
of the team. Calls and emails are flying between the
project manager and the customer but the rest of the
team does not have access to it. This communication,
when done well, builds trust between the agency
and its client. And to know how to talk with the
client, how the relationship formed, the fears of the
customer that we were able to overcome, that is
the knowledge that should stay with the team, even
when the project manager leaves or is on holiday.

However, the communication cannot be sealed
when multiple people do it, in the same way that
code cannot be sealed if we want multiple people to
work on it. When the team receives an email from
the customer, everyone can see it. When one of the
developers answers it, everyone can see the answer.
Sometimes the answer is just okay. Sometimes,
however, the answer is a spectacular, well-thought-
out email that dispels all customer doubts. And
everyone learns from such experience. When we
see well-structured code, we try to learn and use it
throughout our codebase in similar cases. In a similar
way, we can learn from others how to communicate
properly with respect to customer knowledge and
opinions. But the most important aspect is that the
communication is transparent so everyone gets a
better feel of customer needs, expectations, and
priorities. We learn how to work with such a person.
It’s not a hidden knowledge. It’s exposed. We know
how to talk to our client. And every client that we
work for is unique.

Our superiors like to think that the business
value of our product should not be limited by the
technical challenges that we face. And that is what
we always strive for. However, it is usually fiction.
Many projects’ codebases are not so clean that
we can easily adapt them to every new customer
requirement. And many teams lack skills to do that.
But there is usually a wide range of possible things to
implement and of possible solutions to any problem.
When programmers talk with the client about a
problem in the code, they almost immediately start
to imagine solutions. And they know what is going
to be hard and what is going to be easy. Because of
their knowledge of the current state of the code, they
can propose multiple ways of solving the problem
and many times guess more or less correctly which

solution is going to be easier and which one harder.
So they talk with the customer, for example saying,
“I hear what you say. Sure, we can do it. I think it will
be about three days of work. But you know what is
hard? That part about supporting this use case for
unlogged users. If we drop this requirement, and by
looking at the server I see that only 2% of our users
are not logged, I can have this feature for you by
tomorrow. What do you think about that?”

If your programmers can talk with the business and
provide valuable feedback like that, that is a huge
win. The other agency might be 50% more effective,
but your programmer just convinced the customer
to drop a useless requirement (by providing actual
data) and speed up the development from three days
to one day. The best money for your customer is
the money not spent. Direct collaboration between
programmers and business allows us to avoid
confusion in understanding the requirements. And it
provides opportunity to negotiate a scope based on
developers’ knowledge and business needs.

Many agencies fear letting the programmers,
especially junior programmers, talk with the
customer. They are not confident in their
programmers’ communication skills. However, there
is no other way for programmers to learn those skills
but by actively and constantly talking to the client.
Engage in the communication to understand the
domain of the problem and the real business cases
that are the reasons for the software to be built.
After all, that’s what domain-driven development
encourages us to do: to talk to the customer and get
to know their domain very well.

InfoQ: One of the essays in your book talks about
the developer’s attitude to project management.
It mentions that developers often expect that
project managers have arranged everything so that
they can do their work. Is this also the case with
agile teams?

Robert: I would say that it depends on the company
that you are working for. Some of them claim that
they do agile because they’ve established some of
the agile practices like iterative process, continuous
delivery, pair programming, or others. But the entire
process of talking to the customer and gathering
requirements is delegated to one person. Be it a
project manager or senior developer, does not matter
much. It’s still only one person doing the activities.

Page 19

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Sometimes this situation is an effect of the
arrangements in the company, and such work style
is pushed from top management because of lack
of trust in the programmers to do it properly. But
sometimes, even if management would like to lean
towards more agile and direct communication with
the customers, the obstacles are the programmers
themselves. They feel insecure and uncertain when
doing project-management activities. There is a
small chapter dedicated to changing that attitude
because it is a critical factor when you want more
self-managing teams. Without a proper change of
mindset, they will always prefer working with code
over working with a customer.

But a great number of companies have adopted agile
more deeply and their developers truly collaborate
with the customer on daily basis. They do it eagerly
and with passion, because they already know how
valuable and critical these activities are for the
success of the project. I hope that after reading the
book, more programmers will also happily adopt this
positive mindset.

InfoQ: Another essay talks about how developers
can build a relationship with their customers.
Can you explain why this is important and how
developers can do it?

Robert: It is just easier to peacefully collaborate
when we know each other and trust each other.
I think the best way to explain it is to compare a
situation of the customer only talking to the project
manager with a situation in which the customer can
discuss the issues with every team member.

In first case, the relationship is built between the
project manager and customer only. They get know
each other very well and find ways to cooperate.
They learn each other. What’s important for your
agency is that the project manager learns the
customer, how to propose features, how to talk
about deadlines, what the customer fears, and more.
The quality of communication depends entirely on
the nature of this relationship. When the manager
goes for vacation (or leaves the project or company),
everyone else is left with nothing. What used to work
smoothly is now at great risk. The whole trust gained
by one manager is now gone.

Compare this to a team of five people all talking
directly with the customer. When one person
leaves, there are still four left and the trust stays at

the same level. A new person joining the project to
compensate for the one that left must, of course,
earn his or her own trust and prove to be valuable
team member. But knowledge of how to talk to the
customer, how to negotiate, how to discuss scope
change, and all of that stays in the team. In the same
way that you can have collective ownership of your
code, you can have collective management.

The trust and relationship built directly between
client and programmers proves useful in negative
situations – say a risk of missing the deadline or a
personal situation that requires developer absence
for few days, anything. It’s great when you can just
talk to the client directly and explain it from your
perspective as human being instead of pushing it to
the project manager, who must then explain it to the
client, and worrying and waiting for the result of such
conversation.

But such a relationship also gives us a space for
better direct collaboration and a tighter feedback
loop. As a developer, you can directly ask customer
for the requirements, talk about your progress, and
ask for feature verification. Listen to the praise and
deal with customer doubts. This makes the entire
work smoother and more pleasant.

So now that we know why, the question is how to
build such relationship. I think the answer is by
helping to handle classic project-manager activities.
Talk to the customer. Help prioritize tickets. Help
split features into smaller stories that can be
deployed earlier. Challenge tickets that bring no
business value. Implement business metrics and
propose valuable things to measure that help in
making future decisions. Sometimes the best thing to
do is to honestly tell your customer that this feature/
project/solution is not going to work, and that we
should not waste money on that and instead try
something else.

InfoQ: There is a whole chapter with essays about
communication in your book. What makes it so
important?

Robert: As I mentioned earlier, we started the book
to help people work remotely. Even though the
tools and the possibilities are already here, remote
work is still not a popular option. We have few
model companies that prove that it is a viable way
of working and that they can deliver the software.
So it is a possible option and desired by many people

Page 20

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

but most of us working remotely were never trained
for working in this kind of environment. We spent
years going to stationary schools. Our parents,
teachers, and mentors could not work that way and
they usually had to go to some kind of office. There
is no TV show that will show you how people work
remotely so you can’t learn it from media.

And when you are working remotely, communication
does not happen the same way it happens when
meeting face-to-face. Remote teams must find their
own ways of working or communication just won’t
happen. And without working communication, you
don’t have a working team or working company.

It seems that every remote company that we talked
to had to invent its own system. So we wanted to
share what’s working for us so that you can kick-
start the beginning and iterate from that. Obviously,
what’s working for us might not work for you, but
let’s at least share a list of the practices that may be
worth trying so that it does not take so much time
for everyone to invent them on their own again and
again.

To master the communication aspect is especially
important for companies that are half-remote,
half-office. I think this is the hardest setup. For
everyone-in-the-office companies, communication
will happen spontaneously. The fully remote
teams sooner or later usually find their own way
to keep everyone informed and in the loop. But if
you are half-remote, half-office, you can’t rely on
spontaneous communication because that never
reaches the remote workers. I’ve heard stories about
companies with office workers that tried hiring
remote workers and later found out that the deal
didn’t work very well. Usually, it fails because they
haven’t found a way to reorganize communication
so that it is fully, conveniently accessible for remote
workers. The whole thing fails not because of a lack
of technical skills of the remote workers but because
of communication problems.

InfoQ: I’m assuming that there are also similarities,
activities where it doesn’t really matter if
developers or project managers do them. Are they
also covered in your book?

Robert: Indeed, there are some activities that we
cover in the book for which the end results might
be the same regardless of the executioner, such
as “split the ticket” (two stories instead of one) or

“challenge the ticket” (story removed from backlog).
But the problem is that such techniques, while maybe
obvious to project managers, are not that obvious
to developers. You need to tell developers that they
have the authority to do such things, that it is part
of their toolbox and should be used depending on
situation to make their lives easier.

InfoQ: In your opinion, is there still a need for
project managers in software development?

Robert: I always perceive a project manager as
someone who plays a similar role in the team to
a senior developer or architect, but in the area
of soft skills. The senior developer is not the only
person coding in the project; there is whole team for
that. But it is his or her role to inspire and provide
leadership in the technical area so that everyone
can grow while working on the project and so the
code remains clean. A project manager, on the other
hand, should not be the only person doing project-
management activities. Entire teams can work on
that. But it is her or his role to coach and mentor
everyone in areas like how to talk with the client,
negotiate scope, manage deadlines, and keep quality
high. If everyone in your team is great at that, you can
live without a project manager because every dev at
any moment can play that role.

But what if your team has not yet reached that stage?
You need a coach or a mentor. The project manager
can be such a person. But I imagine it to be more like
“Come with me and we will talk to the customer and
try to gather the requirements,” instead of “Let me
talk with customer and I will come to you later with
my findings.” I imagine the project manager to be a
navigator through the business part of the project
for the developers, not a buffer protecting them from
ever going onto such land.

In one project, our project manager had experience
in the customer-support team of that project. It was
interesting to see this non-technical person be able
to judge parts of our code based on the number of
problems related to it that were submitted through
customer-help channels. This person was able to
provide feedback on what’s important to the users
and on the priority of next tasks because she knew
what affected and irritated users. I would have
never thought of giving that person some of the
responsibilities of project managers. Our customer
made a great choice.

Page 21

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

InfoQ: Can you name some estimation, planning,
and tracking practices that developers can use?

Robert: It’s funny because we don’t use much of
these. We try to avoid estimates. Our preferred
method is to split tickets into very small stories until
we see the path from current status to desired state
of the product. For planning and tracking, we simply
use whatever our customer likes. Redmine, Pivotal,
Trello – the tool does not matter as much as your
process. We don’t believe in iterations because we
don’t see much value in putting in artificial barriers
that separate days, which does not bring any value.
We try to see the project as constant stream of time
and people working on the most important task that
they can when they finish working on their current
task. The customer can reprioritize tasks on a daily
basis according to the always-changing business
knowledge.

InfoQ: Can you suggest how communication can
be improved in teams, and between the teams and
their stakeholders?

Robert: Sure, although I am not sure if that’s gonna
be revolutionary in any way. :)

First, make sure everything important is written and
people can link to it. Surprisingly, many companies
still fail at this. They have telephone calls and forgot
to make notes. When they do take notes, they send
email, but you can’t easily link to email. We went
with Hackpad recently, which was one of the best
things for us.

Remember to link to the discussions and decisions in
as many places as possible – especially in commits.
You might be wondering whose communication
that is going to improve: developers with other
developers. They are stakeholders, too. It doesn’t
really matter what you choose to go with. Pivotal,
Redmine, Trello, Hackpad, GitHub… every good
tool allows you to link to the ticket/issue you are
discussing. If you communicate with stakeholders
(clients, subcontractors) via email, just copy the
most important decisions into your ticket tracker to
the end of the conversation, especially if your email
communication is not transparent to the entire team
because you are exchanging emails one to one with
the other side.

Don’t assume anything. You might be thinking that
the subcontractors have the same understanding of
requirements and the same knowledge about the
system as your own but that is often not the case. So
please try to be explicit, state your knowledge, your
understanding of the problem, rephrase your college
point of view and maybe you will find the missing
points between your knowledge and the other
person’s.

I was once writing an API for a few-week-long
project. It was obvious to me that it was for a fat
client. The developer working on the iPhone part,
the consumer of the API, found it obvious that that
was for thin client. We were pushing the design
of the API in different directions. We realized our
different visions few days before deadline (and just
in time). We had both assumed and never verified our
assumptions. For each of us, our points of views were
obvious, and that’s how we always dealt with things
in that situation – until we didn’t. So don’t assume,
and if you do, go ahead and verify.

Overcommunicate. When something important
happens, like a decision is made, feel free to
announce it on many channels. Mark the decision
in a related ticket. Mention it at the stand-up,
write on IRC, Campfire, or Flowdock. Note it in the
Git commit message. Don’t be afraid of repeating
yourself, of communicating the same thing multiple
times. It doesn’t take much time and you will
make sure everyone involved is notified. This is
especially important in remote and asynchronous
environments when we can’t rely on daily visual clues
and spontaneous, ad hoc communication between
coworkers. We even write on an IRC channel that
we just started working or that we are no longer
working and away from keyboard. It’s great to know
whether you can just shoot a question and expect a
quick answer from your coworker or not wait for an
answer because nobody else is working at the same
time as you.

Consider going fully transparent. I am sure the
ticket tracker, project documentation, and code
are all open for your developers and others to read
and edit. How about email or phone calls? Does
everyone in your team have access to them? This
might sound crazy but opening those channels can
greatly improve communication in your project.
If we work for a company called FooBar, we will

http://hackpad.com/

Page 22

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

establish a foobar@arkency.com mailing list that
sends the email to everyone involved in the project.
We ask our customer to send emails to foobar@
arkency.com instead of single developer or project
manager. Whenever we communicate about the
FooBar project, we CC foobar@arkency.com. It’s
almost magical to be able to track every email and
refer to it in our conversations and to be able to
find the decisions even if everyone involved in the
communication is currently on vacation. ;) We don’t
yet record phone calls with our customers (rather,
we create short documents that summarize them)
but we do record meetings with the customer
in a conference room, not as a primary source of
documenting decisions (that should always be
written to make it easy to find and digest) but as
a wonderful backup in case we missed writing
something in a self-explanatory way.

Split communication with all stakeholders across
your entire team. Instead of having one person (the
project manager?) dedicated to communicating with
the rest of the stakeholders (clients, subcontractors),
make it the responsibility of entire team so they are
more engaged. We do it by treating communication
efforts the same as developing new features.
Whenever there is something to discuss, we
create a ticket in our ticket tracker and one of the
programmers will complete the task the same way as
they implement code features.

InfoQ: Do you have additional suggestions
for developers who want to learn more about
managing projects but who don’t want to become
project managers?

Robert: Don’t be afraid of pushing for change in
your company towards a more friendly environment
for you. Do you want to work remotely at least
sometimes, to stay more with your family, to avoid
the traffic, to spend time in an environment you like?
Talk to your colleagues and check if they have the
same needs. Push together for the changes that will
let you have that. That project that you are working
on can’t happen without programmers. And you have
the right to remain happy in your job.

Managers often try to make developers work after
hours (this is even sometimes glorified in the media)
and we don’t always have the power or the skills
to avoid it. Go for the skills and use them to your
advantage. Work smarter instead of more. You

don’t have to become a project manager for that. By
acquiring proper management skills, you can help
the customers that you cooperate with, choose tasks
more wisely, and spend the budget better. That can
result in better rates and in more time for you. I wish
you that.

ABOUT THE BOOK AUTHOR
Robert Pankowecki is Ruby on Rails

developer, working remotely for

more than two years. At Arkency, he’s

worked on number of Web projects in

collaboration with small startups as

well as large corporations. He created

the active_reload library, which made

your Rails apps faster in development

mode. He’s a founder of the wroc_love.

rb conference and one of the leading

speakers at the Lower Silesian Ruby

User Group.

READ THIS ARTICLE
ONLINE ON InfoQ

mailto:foobar@arkency.com
mailto:foobar@arkency.com
mailto:foobar@arkency.com
mailto:foobar@arkency.com
http://wrocloverb.com/
http://wrocloverb.com/
http://drug.org.pl/
http://drug.org.pl/
http://www.infoq.com/articles/developers-oriented-project-management

Page 23

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Risk Management Is Project
Management for Grown-Ups

Tim Lister gave a talk at QCon London 2014 titled
“Risk Management Is Project Management for
Grown Ups”. In it, he presented the advantages – and
the dangers – of practicing risk management in an
adult fashion while offering a process for tailoring an
organization and discussing how an organization can
grow up.

He discussed what risk management is, what it isn’t,
and how project-management approaches need to
incorporate risk management at their very core.

The first time I led a project, the team had four
members. My manager, Nancy, said, “I want you to
drop a project plan and a timeline for me, and I’ll sit
down with you and talk about it.”

So I chewed it up and I looked at this thing and I
thought this was a crock. I took it to Nancy. Sitting in
her office, I said to her, “This is my plan. I don’t know
what’s going to happen but I do know it’s not this.”
And she laughed and we talked. I said, “This plan is all
sunshine. This is ‘everything goes right’.” I said, “I’m
not an old guy but in software projects, it never goes
right.”

Somebody does win the lotto but, if you notice, it’s
never you, right? Somewhere there’s a project that is
on time, on budget, sunshine and roses, but it’s never
you. It’s never your project.

All my career, I’ve wondered why organizations
try desperately not to discuss the risks, the

uncertainties, the unknowns that are there at the
beginning of a project. To me, a project is a discovery.
You start with a lot of unknowns and by the time you
actually deliver, most of them have become known.
And some of them turn out not to be what you
thought they were.

You must deal with unknowns, with uncertainty, and
with probability. Is it a 10% chance this is going to
happen or is it a 90% chance this is going to happen?
– that kind of stuff. It seems to me that how you do so
is the difference between childish behavior and adult
behavior.

When you’re a kid, you’re immortal. I have two sons
and if you have children, you know there is an age
where they just think “Nothing bad could happen to
me”. We were driving up to the mountains of New
Hampshire to visit their grandfather, my wife’s dad,
up in the mountains in the summer. These guys do
amazing cliff-climbing and rock-climbing stuff. We’re
driving up and a voice in the backseat says, “We’re
going to climb Cathedral Ledge.”

Now, Cathedral Ledge is like several hundred feet –
and it wasn’t a question, like “Dad, can we climb?” It is
a statement, a declaration.

And my wife says, “Oh, no, you’re not.”

I said, “Wait, wait, you want to climb Cathedral
Ledge? I think we can compromise.” And my wife is
looking at me with the bullet look.

Presentation summary by Shane Hastie

Page 24

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

I said, “I tell you what. You give me a week’s
allowance each. I’ll pay for the difference and I’ll give
you a morning of climbing lessons together with a
teacher for climbing. I’m not going to teach you this.
I have no interest in climbing Cathedral Ledge.” My
wife was looking at me.

Later in private, I said to my wife, “If you tell them no,
they’re going to climb something, right?”

You can’t say no because they’re going to climb a
building or something. They’re crazy. Right now,
these people are insane. On the other hand, in this
presentation room, I am sure there are people who
have gone skydiving.

When I was a young guy, I went scuba diving all the
time. That’s risk-taking, but you work really, really
hard to minimize the risk, right? You learn. You have
to get certified. You never let anybody touch your
gear. You never dive alone. There are all sorts of
things you do to minimize the probability that you
are going to die and to ensure that you are going to
have a great time exploring the underwater world for
an hour or so in nice, warm waters somewhere.

So it’s not the behavior. It is the approach. My entire
career, I’ve been trying to talk to people about big,
hairy projects, saying all this project planning. You’ve
all got to understand. There’s a giant amount of
unknown in there. Don’t tell me that you can look
today and see everything that’s going to happen two
years into the future. Bull, nonsense. And the way we
deal with this is to say, “Here’s what I know now and
here’s what I am going to have to figure out. We, as
a team, we’re going to have to figure it out as we go,
what makes sense.”

I am not going to talk about it directly but let me
just say at the start that I think the agile movement
is deeply about risk management for many typical
risks in software projects. It’s really a reasonable
strategy, right? It’s a highly iterative, steering kind of
mechanism, a “we don’t know what we don’t know”
kind of thing. So we’re going to go out and then we’re
going to make another decision. We’re not going to
plan everything and then go do it. We’re going to say,
“Here’s a little piece we want to do. Everybody cool
with that? Can we do this? Okay, let’s do it. Let’s do
it. Let’s show it. Let’s add on or change course and
we’ll increment our way into the future where at any
given time we don’t have a vast investment full of
assumptions and the way I think about it.”

So here’s a risk, right? I am going to try to define
risk by example here. Here’s a risk. This is a very
American risk. This is a bull riding. Think about it. The
best outcome for this bull rider is he stays on the bull
for eight seconds. You have to ride for the full eight
seconds. You can only use one hand. The other hand
is out. They time you and after eight seconds they
have like an air gun that goes, “Boo!” And you then
try to gracefully exit the bull, right? If the bull has just
gone crazy and you stayed on it, you get a high score.

So if you are the highest scoring bull rider who
successfully rides the bull, you win some money and
a big belt buckle. I know this sounds strange, but
you get a championship belt. That’s the upside. And
the downside is death, right? And you’re in there
somewhere. I mean people get seriously injured on
bulls.

It’s a crazy thing, but it’s just a risk, right? It’s a
potential problem. There is in the outcome, you ride
the bull and jump off, you win money, they give you
a buckle and you feel great. That could happen. It’s
going to happen to one rider at the rodeo, I guess,
right?

Page 25

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

A couple of years ago in this Mexico City bullring, a
bull managed to get over the wall and into the crowd,
the people who actually paid money to go watch. As
it turned out, no one was fatally injured or anything
but this is a problem, right? This risk is there. This is
not chance. When the bull is in the seat next to you,
you’ve got a problem, right? I’ve done some work in
Mexico City and I’ve become very good friends with
one guy down there, and he was telling me about this.
All the bulls have names and the best irony is that this
bull’s name is “el Pajarito”. How ironic, the little bird
flew into the audience.

So, a risk is a potential problem. A problem is a risk
that is upon us. The probability of this risk becoming
a problem is 1 – it is here. The bull is next to me.

We can’t avoid risk. This is one of my favorite slides
and the people at the old CMM always say, “Oh, we
should never have made the slide, Tim. You’re killing
us.” Remember the old CMM with the five levels and
the CCMMI of software development maturity? I’m
not going to talk about that at all, but what I love is
this part right here.

At level one, you’re heroes, smart people working
really hard to build software, right? And the risk is
everywhere down here at the bottom. Productivity
and quality is a mere glimmer, a single data point
or whatever. But if you can climb to Repeatable,
to Defined, Managed, Optimized… all of a sudden
risk goes away and productivity and quality is
everywhere. Level five is nirvana. It is all productivity
and quality and there is no risk, none at all, right?

This is the biggest, stupidest graph I’ve ever seen.
It’s all about risk in our business, right? Say we’re a
company. Everybody in this room is a company and
I’m the big cheese. I am the managing director. And I

believe that the CMM scale comes from God’s lips. I
believe this is true. So I call up the people at Carnegie
Mellon University, whatever, certified assessors
to come assess our software company. And they
assess. Now, in comes the software assessor and
he says, “Ladies and gentlemen, I’ve got great news.
This is unheard of. I had to call back to CMM Global
Headquarters before they let me tell you this. Simply
put, ladies and gentlemen, you are a six. We didn’t
even know there were sixes. This is like finding a new
element for the periodic table. You are simply the
best software development group we have ever seen
bar none. Thank you very much.” And he leaves.

I, the CEO, go, “Okay, we are the best on the planet.
We have evidence of this or opinion of this. What
should we do? We have got the greatest group of
software developers bar none. How do we use it?”
The answer clearly kind of has to be that we don’t
do any projects that any bozo at level two or three
could do. We’d be wasting our skills, right? We’d be
underinvesting in ourselves. We have to do stuff
that people will have a hard time following. With our
expertise, we’re going to go take it to our competitors
in the market and ram it right at them. We are better
than you are.

How would we know that we are doing the best, the
most complex, the most wonderful things we could
do? I would argue that one easy metric would be
that some projects are failing because we’re right
at the edge of our capability. These failures would
be a good sign some of the time, right? If everything
is all happiness and sunshine, I don’t know if I am
stretching my people and I am getting full use of their
experience and their abilities.

I know what CMM is trying to say here. A certain
kind of estimating risk goes away. You become more
predictable. I’ve seen companies who are really
predictable and build really boring software. If you
are really predictable, then you are doing the same
old things over and over again.

And if there’s anything in our industry we’ve seen, it’s
that. Haven’t you ever noticed this? As soon as you
get really good at something, you never do it again.
It’s part of why I love this industry. Just when you
think you’ve nailed it, your people are good, you’re
really talented… – oh, the world changes on us. Oh,
we don’t do that anymore. But you’ve got to surf the
technology or you’ll drown. There are always going to
be unknowns.

Page 26

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

I am not trying to avoid risk and I am not trying to be
a daredevil. I am not trying to run toward risk for no
reward, but I am willing to embrace risk, to say, yes,
there are risks on this project, there are uncertainties
on this project. But if we can conquer them, we will
be rewarded for conquering them.

Here’s another example, from a bunch of years ago
now. Richard is my brother-in-law’s brother and is
married to Kathy. They’ve got a bunch of money and
they live north of New York City in kind of this hill
‘n’ dale horsey area of rich people who have horses
and that kind of thing. They decide they are going to
build an in-ground swimming pool in their backyard.
They want that. They got a couple of kids and Richard
loves to swim so they’re going to have their own pool.

And so they build a spec. This is a true story. Richard
told me this story. They specify not only the pool but
also the area around the pool and what is going to
be – have slate, all the stuff. And Richard is even into
what diving board he wants. They get these little
metal flags and go in the back and place the metal
flags so that, I forget, yellow flags are the edge of the
pool and the larger blue flags are the terrace area
that is going to be around the pool. They write a spec,
literally, a written document, and make copies. And
they start to call up people who build pools.

Whenever a person who represents a pool company
comes by, they hand him the spec. They walk
out in the backyard and they talk and there are
measurements of how deep the pool is going to be
and all this sort of stuff. And they say to the person
basically, “If you have any questions, ask away. If
something comes up, call us. But in the next couple of
weeks we’d like your company to give us a bid of how
much it’s going to cost you to do what’s in the spec.”

The first guy comes through and walks off with the
spec. The second person does the same. The third
person, an old, kind of rough guy, looks at the spec
and doesn’t even look at it too much. They go in the
backyard and talk, and Richard says toward the end,
“We’d like you to bid.”

The guy says, “You wonder how much it will cost to
build the pool?”

“Yeah, yeah, I’d like a bid.”

“We’re not bidding.”

Richard asks, “What do you mean you are not
bidding?”

And now, I want you to remember this for the rest of
your professional life. Here comes a sentence that
is going to be in my brain until my brain no longer
works. The guy looks at Richard and Kathy and says,
“Do you know what’s under the grass?” I love that.

And Richard kind of goes, “Uh, what?”

And the pool guy goes, “Buddy, buddy, buddy, over
there. Look at that. That’s rock. It’s not far away. If
this is just dirt, topsoil, I’d bring in a backhoe. I can
excavate in less than a day. But if we scrape off maybe
six inches of topsoil and we hit Mother Earth, we
are talking about blasting. We are now talking about
having to get permits from the town, notifications
of your neighbors, all sorts of safety controls. Until I
know what’s under the grass, I can’t bid.”

And Richard told me, “I was stunned but I totally got
it.”

And so there is silence there and the guy goes,
“Look, here’s what I am going to do. I’ll bring you the
backhoe, but not with the hoe. We can drill probes
down, just drill head. And I am going drill in different
places where you think you’ve got the pool and I am
going to tell you what I find. And it is going to cost
you $250. And I will give you the report whether we
win the bid or not. Once we know what’s down there,
we will bid. And if you accept our bid, $250 was on
us.” I forget if the number really was $250.

Of course, you know what happened. Richard and
Kathy, being reasonable people, said, “This guy is
a straight shooter. He’s honest. What was with the
other two people? What were they thinking?”

Page 27

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

And I started laughing when I heard this. Richard is
not in our business and I was telling him I know those
two other people, who say things like “This project
will be done in a year. Oh, my goodness!” and “Oh, I
am so upset. It’s 10 months into the project but we’ve
got at least six more months to go. Wow, I am as
stunned as anybody else.”

I mean, at some point, people in our business are not
going to get that “Oh, I’m shocked and dismayed”
routine. What a bunch of nonsense. Maybe we can
say that we hope to be done at 12 months, but there’s
all sorts of things we don’t know about that make
that only a guess. It’s a guess. We got to go a certain
ways down before we can say, “You know what? Here
it is.”

In our business – I will not name this company
 – I know of a woman is running a project whose
company is like, “We’ve got to get it done by the end
of the year.”

She’s going along and she says, “Yes, I understand.
I understand why. I understand what it costs the
business if we bleed over into the next year. I
understand that. I want it, you want it, okay. But I am
not committing.”

In month eight with three months to go or something,
she goes into a meeting with her boss and says, “On
my reputation, we’re going to make it. I can see the
end. My people see the end. We’re going to make
your end.”

And the boss says, “Are you sure?”

She says, “Basically, yes, I am sure. Unless we get the
plague going through the office or something, yes, we
are going to make this.”

Three hours later, she gets called back in and the
boss asks, “How about November?” That’s what we
are dealing with, right?

The whole point is the world is full of uncertainty and
we have to proclaim it in our own work.

This is a picture from the National Weather Service,
their National Hurricane Center. In the United
States, we get hurricanes in the late summer and into
the fall. And this one is from all the way back in 2003.
This is Hurricane Isabel. I didn’t want to pick any
other ones that had been brutal.

But look at this graph. I don’t know if you’ve ever
seen one before, but it’s a wonderful graph. It says,
“This is advisory number 38.” So I am assuming there
had been numbers 1 to 37. And it says the current
center location, the eye of the hurricane, is right
there at 25.2 north, 69.4 west. Maximum sustained
winds are 140 miles per hour. That’s way over 200
kilometers an hour. Current movement is only 8 miles
an hour. The storm is moving very slow, right?

The map indicates that the brown is the current
center. The black is center positions of the forecast.
It’s forecasting the hurricane to go here. Right now,
it’s 11:00 a.m. on Monday and they’re saying by
8:00 a.m. on Thursday, Isabel’s eye will be right off
the coast of North Carolina. But the forecasters
also say they’re not sure of that. There are so many
variables that steer hurricanes. There are all sorts of
uncertainty.

So the map gives us a potential one-day to three-day
tracking area, this teardrop that says, “Hey, in the
next three days, we think the storm will be contained
in that teardrop somewhere. But we don’t know.” And
the forecast four to five days ahead blooms all the
way out to that outline. But by Thursday, this map
tells us that Isabel could be as northerly as the state
of Delaware. The most southern projection is all the
way down by Charleston, S.C. We’re talking about a
width here of what, 600 miles? Something like that. A
long way.

In our business, some manager will say he needs to
know where it’s going to hit. And you reply, “Well, the
mostly likely probability is right off North Carolina.”
No, no, no – that’s the most likely single point but
that doesn’t tell you anything. The teardrop range
tells you everything.

Page 28

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Say, for instance, you own a boat in the water in
Virginia. What do you do? Do you run to the marina
and get them pull up your boat and put it up in blocks
safely on dry land? Maybe the marina is going to get
wiped out. Do you try to sail your boat out of the
teardrop? Sail north to New Jersey? What do you do?
The answer is there is no right answer until you tell
me about your boat.

If your boat is a small fishing boat that you can pull
on a trailer behind your car, you don’t do anything
on Monday. You wait for more information because
when advisories 39 and 40 come in (they come in
on a regular basis), you can better gauge your odds
of getting hit. All you need is an hour and a half to
go down, put your boat on your trailer, and pull it to
your backyard or wherever you think it’s going to be
reasonably safe.

On the other hand, if you’re some rich dude with a
40-foot sloop, you have a different decision to make.
It costs a ton of money to take a 40-footer out of the
water. And if you are going to try to sail, you’d better
be sailing now. You better go as soon as possible,
right?

So sometimes, risk management is really about when
you make decisions: based on what information you
have and baseline information, when is the time to
take action? If you’ve been around, you know you
never have complete information, or by the time
you have complete information, you’ve lost all sorts
of options. So you are always making decisions on
partial information, right?

But if I wait for better or more information, do I
lose options? I’ve watched many projects wait until
the problem is there, and then they have problem
management, not risk management. And so I always
complain to them. Your position may happen to be
project manager but the real project manager is time.
Time is managing your project, not you. You’re just
reacting. You’re not managing.

A risk is any variable on your project that within its
normal distribution of possible values could take on a
value that is detrimental or even fatal to your project.
That’s the way I think about it, a potential problem.
Interestingly, the risks take on this kind of curve
called a Rayleigh distribution. I am not going to talk
too much about the Rayleigh distribution but it has a
steep rise, peaks, and then has a long tail.

So let’s say we’re trying to decide when we are
we going to deliver. We say there is no chance of
delivering in the next four months. The first chance
is just after four months but the most likely delivery
time is about month six-and-a-half. We could take as
long as 14 months all the way out there in the tail. So
we’re looking at 4 to 14 months is what we’re saying.
Tom DeMarco calls the most optimistic projection
the nano-percent date and says most projects are
run with the expectation of delivery on that date. It
explains why there’s such skew.

The boss asks a team when they think they could
possibly be done. And young, naïve people who want
to please go, “If we catch every break, we are really,
really good, and the wind stays at our backs, we could
get it done in four months.”

And the boss smiles and goes, “Let’s go for it.” It’s at
the nano-percent date. It’s winning the lotto, right?

Tom and I years ago collected data on real projects.
We asked people done at certain places to estimate
the amount of work and a completion date, and to
estimate it every month until they actually finished
by our definition of done. We looked at over 100
projects.

My dad is a mathematician so I took our data to him
before we sent in a refereed paper. I didn’t want
to be made a fool. My dad is a mathematician. He’s
an algebraist. He’s not in the software world. And I
was worried that he was going to go, “You moron!
You should have used a correlation coefficient,” or
something like that.

So I show him the data. He’s looking at this. He’s
not trying to be funny. He’s looking at the data and
he says, “These people originally estimated 14.25
calendar months to complete and they were done in
19.” And he’s looking at the data. Again, I will never
forget this. He goes, “These people have no right to
estimate anything less than the season.” Given the
data and the precision, he concluded they should
only estimate in quartiles of years. They had no right
to say 14.25.

My dad said, “In math, this is a joke. Oh, you
silly people.” And he basically said that we could
legitimately estimate that we might be done next
year when there are tulips. Next spring, when it’s
sunny and hot, we could be done then.

Page 29

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

My dad also said, “Everybody is late.”

I said, “Dad, it’s not really that bad. Look, there’s a
couple here really close. Dad, look, people are on
time or they’re late in our business.”

And he goes, “There’s another possible outcome.” At
first, I didn’t get it. “Early,” he said.

I said, “Dad, I’ve never heard of anybody really
early. Or if they’re early, they deliver much less
functionality than they estimated they were going to
deliver.”

He looked at it and said, “Tim, skew, skew. Remember,
this is skew. Everything is late or on time and there
is nothing in that other domain. Something is going
on that’s skewing this data.” In other words, it’s not
an estimate at all, the way other people are talking
about estimates. I’ve always thought that’s kind of
interesting.

We can’t avoid risk, right? All projects benefit but
none or few can take little risk anymore – as I like
to say, those were all done when I had a different
hair color. All the low-lying fruit is gone; the easy
things that benefit your organization or make a swell
product are basically gone. And you can’t control
many of the variables that could be risks, right?

I am an arbitrator. I had a case where a software
vendor convinced a company to use a product even
though both parties admitted that the current
product couldn’t do what the company wanted. The
company accepted the vendor’s promise that version
8.0 would be ready by the time they needed it and
that version would have all the required features.
It got even worse that that. The vendor said, “Buy
version 7.2 now and we’ll give you version 8 for free.”

I don’t know why these idiots reached for their
wallet. They bought version 7.2 and guess what?
Version 8 did not come out as announced, and it
didn’t come out and it didn’t come out and it didn’t
come out.

Finally, after having the project all done except for
what they needed version 8 for, nine months later,
the arbitration began. There still was no scheduled
delivery date for version 8 at that point. They
couldn’t control it but, you know, if you say, “Hey,
has software ever been late?” Ding, ding, ding. When
some salesman says it’s going to be there in plenty

of time, why are you buying that? What are you
smoking? Come on, guys.

I love this picture. The problem is that avoiding a risk
usually lowers the value of the product. You can’t be
risk-averse. If you run away, you devalue what you
are doing. Usually, the risks, for whatever reasons,
tie to the value. Say you have a feature that is really
hard and raising all sorts of problems. Yet if you don’t
have this feature, a lot of customers won’t be that
interested. Yeah, there are risks there. That is the
way we usually work.

From my point of view, in this case, I will tell you to
run toward that risk. Let’s get the team to go right at
that feature because if we can’t build it, the rest of
the project is probably irrelevant. Let’s go find out.
And it’s a totally honorable outcome, I would argue,
if the team tries to do this but discovers massive
problems and difficulties and we cancel the project.
I’d buy everybody lunch and say, “Great job, folks!
Do you realize how much we save by going after this
and finding out that unfortunately this is not going to
work out for us? Look at all the other things we didn’t
do and waste our time on. Now let’s go do something
reasonable.”

Again, from my point of view, agility that’s best
always ties to risk management to say here’s what we
got to do because until we have this as a known, we
are just dancing in the dark.

A Risk Ritual
• Identify risks.
• Keep the tribes separate.
• Assess risk exposure.
• Determine which risks to manage.
• Form action plans for direct risks.
• Form mitigation plans for indirect risks.

Page 30

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

• Determine a contingency fund.
• Build tripwires into project plan.
• Keep the process going....

A risk ritual…. I am not much of a process person, to
be honest with you. People over process is the name
of this track. But I often believe in rituals, and rituals
exist to protect the people in the ritual. Think about
weddings. The ritual of a wedding often involves two
families getting together beyond just the bride and
groom. But the ritual is down to the bride and groom
having to say “I do.” That’s all they’ve got to do, and
they are central to the ritual but all the other things
that go on around them, that whirl around them,
the reception and all the service and the rest of it
protects them. The bride and groom basically play a
tiny role and are protected by the rest.

As you get older, you get to go to funerals. They
protect you because they allow you to mourn. A man
crying on the street is very upsetting. If you ever see
a grown man crying on the street, you wonder what
the hell is going on. But men crying at a funeral are
fine. It’s a ritual that lets you get that out of your
system. It’s saying goodbye. It protects people and
lets them emote in ways that most of the time would
be odd or strange or unacceptable.

Unfortunately, in many organizations, the
enumeration of risk is very upsetting.

A lot of organizations I see say they do risk
management. And if you look at what they do, at
some point early in the project, you see them make a
list of risks, file it, and then move on. That’s not risk
management. That’s naming of the risks and chances
are good they only name ones that are palpable
threats to survival or that kind of thing.

So I want to risk ritual in organizations where
naming of risks is considered whining, is considered
naysaying. As a consultant, I say things that no
employee can say because I’m like the court jester. I
can say things to the king that the citizens can’t say.
Things can go badly for the project manager, team
leader, lead designer, or whatever who says, “I don’t
know. We’ll give it our best shot. I can’t guarantee
anything.” Bosses can start to look at you as if you’re
not a team player when you don’t have that happy,
smiley face on all the time.

A happy project manager can say, “I can do that
for you. I can get it done by the end of the year. No

problem.” But at the end, they say, “Oh, I am shocked
and dismayed.”

No one remembers the other person who warned, “I
don’t know. This is really dicey. There’s a good chance
we can’t make it. No, no.” They look for the person
who has the happy, smiley face who begins, “Ooh,
boy, sunshine!”

So I like the idea of starting with a ritual of a bunch
of steps. We identify the risks. We assess the risks.
For risk exposure, we determine which risks to
manage and which to accept. We form action plans
for direct risks, risks that we can attack, to minimize
the probability that they will happen or to minimize
the cost should they occur. We have mitigation plans
for indirect risks, risks we can’t deal with now but for
which we’re going to have to have some sort of risk
mitigation once we see that they are happening.

A contingency fund is a slush fund of time, money, or
whatever else you want to think about. Stuff that’s
going to happen, although I don’t know what it is. For
example, I need six months to complete the stuff that
I know I have to do, but I add three months for stuff
I don’t yet know about. This becomes a nine-month
project. And if we get lucky, I’ll give those three
months back. We don’t need them. I am not saying
that I am going to burn them up no matter what, but
I am saying that I will not tell the customer that this
is a six-month project. I am saying it is a nine-month
project. Six months I can see and three months are
underwater, I think.

Build tripwires into the project plan to trigger a
warning. How do you know a risk is turning into a
problem? You smell smoke, so to speak.

And repeat this process. There’s no reason to do this
only once. Again, it’s discovery. You’ve got to build a
rhythm of revisiting your project risks while asking if
you see things differently now. Do you know more?
Can you retire a risk? You passed this particular risk
successfully so retire it. Guess what? Every other risk
just moves up the list.

Tom and I have done a lot of consulting. I have never
seen a project that has completely passed through its
risk list with more work to do. It’s really interesting.
I have never seen one. I am not quite sure why that’s
true, but I think it is. Many risks you don’t even know
you’ve passed until you deliver, until you hit the
finish line. It’s not a matter of going, “Oh, the risky

Page 31

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

stuff is done. Now let’s just work.” Just turn the crank
and away we go. So I want to keep that assessment
process going.

Identify risks. There’s no reason to start with a
blank piece of paper. One of the few things that SEI
(www.sei.cmu.edu) did really well is some software
risk management, and they’ve got a software risk
hierarchy, so to speak. It’s basically 130 questions
that you can say apply to you or not. Do you have
contractors? Nope? Okay, ignore the next 30 risks
and move on. But it’s a beginning point, not an ending
point.

Steve McConnell in his book Rapid Development has
a good list of typical risks in software projects. But let
me say this and say it clearly: risk management must
be idiosyncratic to your project. If you just say, “Here
are standard risks. Which ones do we have?” you are
not really playing the game. What those people who
make those risk lists never know is your customer.
What is your team makeup? What other pressures do
you face? What I’m getting at is that you want to ask
“What’s different about my project from the project
down the hall?” not “What’s the same?”

Keep the tribes separate. What I meant here is that
you want to keep the technical people talking about
risk. Anybody can talk about any risk. You do want
to talk to the customers about risk as well, but you
don’t want them at the table when you are trying to
enumerate the risks. You’ll get so much friction and
heat. A customer will think X is a risk and a technical
guy will counter, “That’s not a risk. I’ll tell you what a
risk is here.” What we do is we’ll merge all tribes’ lists
together. Everybody gets to see the official list when
we’re done. But we do the identification by tribe.

For risk exposure, determine the probability of risk
becoming a problem and the cost of effort if it does
become a problem.

Now, some people roll their eyes here. A lot of books
on risk management tell you to first of all look at past
risk lists. Doing so, you see that 20 company or group
projects have listed a certain risk and that four times
it turned into a problem. So the probability is 0.2. But
what if your database is empty?

Here’s good news and this is going to sound weird.
If you don’t know what the probability is, guess. Just
flat out guess. Put together people who understand
that risk and have them guess the probability. The

very fact you’re talking about it shows you’re 90%
of the way home. It’s the way I look at it. At least
that’s a start. No one says, “Oh, our project blew it
because it was a 40% chance, not the 30% chance
we estimated.” Either it’s going to hit you or it’s not.
That’s the deal.

Sometimes I just do small, medium, and large on
risk probabilities, and I try to buffer it. I say a low
probability falls under 25%, medium under 50%, and
large above 50% – large probability, large chance.
And for cost, just give me tiers. I have people vote
and the distribution of votes usually gives a pretty
good view.

Determine which risks to manage. Is there a
profitable tradeoff here? It’s not always that
managing risk is good and not managing risk is bad.
It’s what I get for my investment in managing that
risk? Say somebody says, “There’s a problem that’s
going to cost you 1,000 hours of work and it’s got a
probability of 50%.”

Somebody else says, “I can make that risk go away
at a cost of 700 hours. Give me 700 hours and I can
make that zero probability.” Do you take that? It’s a
50% chance that you are going to spend 1,000 hours
and a 50% chance you’re going to spend nothing
versus committing to spend 700 hours. There may be
extenuating circumstances there but I think that’s a
bad bet. It’s not a great bet.

Are there any actions I can take now that can lower
the probability or the cost? Should I try to contain
this risk by building some contingency? Think about
this as a participant in my slush fund of time, effort,
whatever. Now, the word for the day – I love this
word – is “abulia”. Abulia is the loss or impairment
of the ability to act or make decisions. And abulia is
rampant in many corporate cultures. And I am not
saying the managers make the decisions. Sometimes
the technical people, who know better than the
manager about a technical high risk, must make these
decisions.

And again it comes back to can I act now? If I don’t
act now, am I going to lose options? What’s it going
to cost me to act now? Can I wait another month
for more information before I act? Do I move the
boat out of the water today or do I wait till I see
tomorrow’s new hurricane map? Can I afford to wait
or must I move because if I wait and wait and wait
until the hurricane is on top of me, I lose my yacht?

http://www.sei.cmu.edu

Page 32

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Form action plans for direct risks. Some risks you can
mitigate immediately but the mitigation is going to
force you to change something: the project plan, the
product definition, something. There’s no such thing
as free risk management that will let you vaporize a
risk to zero for nothing. It doesn’t happen.

Some risks you can’t mitigate, so you try to build. Let
me show you this one.

Risk 3: All functionality may not be ready to go at
start of new fiscal year.

Mitigation: Build bridge code between old system
and new, using subsystems 3 and 4 of old system
until all is ready.

Probability: 50%

Tripwire: If all DDRs are not passed by 12/21/1999,
we build bridge.

Cost: Al + two contractors = six work months =
$170,000.

This happened a few years ago. I was consulting in
New Jersey on a financial system, and this company
was trying to go public. I walk in and the accounting
people and the underwriter basically are saying, “If
we can’t get this financial system in this year, we’re
going to have to wait a whole year to go public.
Inserting this financial system in the middle of the
fiscal year causes so much extra work in terms of
getting your financial in order so you can go public.”
So it’s like if we can’t get this in 2014, forget it. We’re
going to go to 2015. We’re going to miss a day, then
lose a year. That’s their dilemma.

So they bring me in and ask, “What’s a chance we’re
going to miss this? Is there anything we can do, Tim?”

We look at this and I talk to people, one of whom was
this guy named Al. You’ve met Al. He’s been at this
company forever. He’s a real tech guy. He knows the
system, and I mean that with respect. He knows how
it works. He sees its DNA – that kind of thing.

Al says to me, “You know, what they are doing is they
are bringing in a package, mostly. And they’re going
to customize the package that will do all this extra
accounting that they don’t do. Our current system
does a lot of this. It’s not like this new package is
doing everything 100% different.”

And he starts talking about pieces of it. I don’t want
to go into detail, but he says, “What we could do is
we could write some bridge code to work between
the old and new systems using two pieces or two
subsystems, and we can leave them as old and
running. Therefore, we only have to work on the
other piece and we could go live at the end of the
year. And then behind the screen, we could clip it
eventually so that the new package is completely
working.”

And so I go, “Ooh! Al, grab a couple of people. Go
check this.”

They come back and say, “We can do this. It’s not
big. We’re going to have to write some bridge code
between the old and the new but we could do this.”

We estimate that there’s about a 50% chance that
we’re not going to make this in a year. We come up
with a tripwire: if all detailed design reviews do not
pass by December 12, 1999, we build a bridge. If that
tripwire triggers, if it’s December 21 and all DDRs
have not passed, we’re going to build the bridge.

Al, the human spec, and two contractors, doing six
person-months of work to build the bridge would
have cost about $170,000. We propose this to the
company and it’s hilarious. They’re like “50%?” and
asking what happens if all but one of the DDRs has
passed by December 21.

I’m from New York and I am old so I tell them, “One is
greater than zero. We build a bridge.”

“We couldn’t wait?”

“Every time you wait, you increase the probability of
the nightmare and the nightmare is the mitigation
isn’t ready.”

Oops, the tripwire went off too late.

You know why I picked December 21. I don’t know
about the UK or wherever you are from. But here
basically no work gets done unless it absolutely has
to around Christmas and New Year’s.

It got really funny. We’re coming along and by early
November all the DDRs passed. And so I said, “We’re
not building the bridge.”

A couple of managers go, “It’s only $170 grand, Tim.”

Page 33

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

I say, “You’re sissies. We are going to make it. You’re
just going to throw $170 grand away. You guys are
rich. I should raise my rates.” – that kind of thing.

But they’re like, “Wait a minute. Wait a minute.”

The great thing was that they avoided the tripwire
and never had to pay extra for mitigation. We made
it, but it was fascinating to watch their reaction.

Keep the process going:

• There is no reason to believe that you can
identify all risks in one go.

• Review risks for changes in likelihood and
opportunities for new actions.

• When you retire a risk, all others move up the list.

So, good luck on your project. Just don’t count on it
when you are racing your boat.

Anyway, we’re at break time. Do you have questions?

Participant: Does this mean don’t bid on government
contracts?

Tim: Well, it depends on what the bid process is.
One of the biggest problems is fixed-cost bids with
unknowns. Good luck, right? I mean I don’t want
to talk about any other country but in the United
States one of the biggest problems with government
contracts is that the people who win contracts are
really good at writing contract proposals. I’ll leave it
at that.

Participant: Along a similar line, how do you budget
for something when risk is unknown?

Tim: You budget just the way the weatherman
budgets. You say this is where my boundary is. And
as time passes, you will be narrowing in on a more
precise measurement. If your organization wants
precision more than it wants accuracy, you’ve got
a problem. You’ve got to talk to them about the
difference between precision and accuracy. You got
to be able to say, “Look, I don’t know exactly how
much this will cost. I think it’s $350,000. It could
be as much as $450,000 or as little as $250,000.”
And there’s no person on the planet that can show
me they know any better. But I am not saying that
this unknown is going to be there till the end of the

project. We will be narrowing in as decisions are
made, as truth reveals itself.

Participant: Do methodologies like PRINCE2 give
enough background?

Tim: I want to say no, but the dilemma here is that
the difference between okay risk management
and excellent risk management has to do with
the particulars of your project. And PRINCE2
never knows about your project. PRINCE2 or any
generalized process is not the same as this anti-
process, in which you consider what’s different about
your project, not how it resembles other projects.
These processes usually look for what’s the same
between your project and other projects. You should
ask yourselves what unique risks you are facing
that could cause delay, loss, cost, or whatever you
want to call it. Then you are doing an excellent risk
management.

ABOUT THE SPEAKER
Tim Lister is a principal of the Atlantic Systems

Guild, based in the New York office. He divides his

time between consulting, teaching, and writing.

He has over 30 years of professional software

development experience. He holds an A.B. from

Brown University, and is a member of the IEEE and

the ACM.

 WATCH THIS PRESENTATION
ONLINE ON InfoQ

http://www.infoq.com/presentations/risk-project-management

Page 34

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Solving the Gordian Knot of Chronic
Overcommittment in Development Organizations

The difference between successful people and very successful people is that very
successful people say no to almost everything. – Warren Buffet

Why do we as humans and organizations have such
a strong tendency to promise more than we can
deliver? One simple explanation is that we want to
please those around us. We want to say yes when
someone asks for our help. Saying no could mean that
people see us as rude or less capable. While being of
service to others is a positive thing, when taken to
excess it can be devastating - leading to stress, poor
productivity, and congestion (both physically as well
as work-wise).

Another less flattering and perhaps more dangerous
reason for overcommitment is external pressure to
promise what we know that we can’t deliver. The
forces behind these external pressures can include
the following:

• Implicit or explicit threats to our job security if
we don’t accept work that is being pushed upon
us.

• A view that the role of the IT organization is to
support the business and that it cannot stand in
the way of business development.

• An erroneous understanding of how work works,
based on efficiency being a virtue in itself without

understanding the damages of high levels of work
in process.

• Pressure on sales organizations that overpromise
on behalf of the delivery organization in order
to close more deals. This behavior is often
reinforced through dysfunctional incentive
systems.

This behavior is often displayed in a fractal way
throughout the organization: people overcommitting
on a personal level; project managers committing
their teams to fantasy project plans; sales selling
features that the organization lacks the capacity to
implement; and top management making promises
that won’t be delivered. This cultural aspect becomes
self-reinforcing; when everyone else promises to
deliver whatever is being asked for, it’s easier for
individuals to become part of this ever-growing mass
than to be the troublemaker who says no. After all, by
the time the problem becomes impossible to ignore,
it might have already landed on someone else’s table.

When the organization fails to analyze its mistakes,
or makes too shallow an analysis, it’s easy to come
to the conclusion that the plan was flawless and the
problem lay entirely with the delivery. And this is
where most organizations focus their efforts to come

by Rolf Häsänen and Morgan Ahlström

http://www.infoq.com/author/Rolf-H%C3%A4s%C3%A4nen-and-Morgan-Ahlstr%C3%B6m

Page 35

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

to terms with the problem: how to deliver according
to corrupt plans.

Organizational behaviors driving
overcommitment
The main behaviors for chronic overcommitment in
organizations are:

1. Delivery capacity is unknown or hard to measure
so it is easy to accept more and more work. It
is common at several levels in the organization.
Investment and schedule decisions are taken
without knowing what delivery capacity exists.
Projects are started and shoehorned into the
unknowingly overloaded organization.

2. Projects and work are not prioritized. “We
already have 234 projects ongoing and suddenly
Marketing/Finance comes with a high-priority
project that is a must. We do not know how it
stacks up against the 234 other projects since
most of them are also high-priority projects and a
majority are musts”.

3. There is no single point of entry for projects.
Projects are started on many different levels and
places in the organization.

4. A political cause is that there is no structured
and holistic approach to stop workers from
starting or killing projects for the benefit of
more important projects. This results in zombie
projects that run long past their expiration date.

All of these causes enforce each other in a vicious
cycle that companies have a hard time recovering
from. To examine this vicious cycle more closely, let’s
take a look at a hypothetical case study.

Case study: Claes Claesson at
MegaRetailer AB
Claes Claesson is an IT manager at MegaRetailer AB,
a company that sells thousands of products in its own
retail shops and through third-party retailers as well
as through their own popular Internet shop where
some of the product families are available.

Claes attends a management meeting where the
marketing director presents a two-pronged approach
to increase sales and revenue for MegaRetailer.
The first required change is to provide real-time
inventory data for company retail shops so that
salespeople can direct customers to another

location if their own shop does not have the item
the customer wants. The real-time inventory data
must be made available both in the retail shops
and the Internet shop (showing closest retail shop
that carries the item). It needs to be implemented
in time for the Christmas shopping season. The
business case for this change is good, there is no
denying that. A projected 12% increase in sales for
the Christmas period would provide a substantial
revenue increase and the implementation would
reduce inventory costs.

The second required change is to provide the
Internet sales channel on mobile and tablet formats
and enhance it with state-of-the-art visual product
recognition. Customers can take a picture of an item
they want and the app will identify the product and
recommend MegaRetailer’s own brands or similar
products. The app will also identify the closest
location that carries the item and allow a purchase
from the online store.

The overall plan is to implement these changes
over the coming 12-24 months in multiple projects.
Sourcing and Logistics have already started to look
at scanning systems to provide product-matching
data when new products are brought into the
MegaRetailer line.

There is no debate that the end result of these
changes will be good for MegaRetailer, but Claes
already has hundreds of projects in various states
of progress and isn’t sure whether there are enough
people to staff these additional projects. There is no
understanding or acceptance in the meeting that the
IT department teams are already busy. In addition,
the marketing director somewhat heavy-handedly
reminds Claes that business drives the company
forward and that IT is to be a supporting function and
not a roadblock. Here Claes’s boss, the CIO, steps
in and says, “That’s right. IT supports the business
and Claes here is our go-to guy for solving difficult
problems and delivering the most challenging
projects. But in all fairness Claes and his people
should be given some time to analyze how we can
deliver these work packages in the best way.”

The supply manager cannot refrain from sniping.
“Well, maybe Claes could take a look at another
challenge, our delivery control system, since it is
already more than eight months delayed.” Luckily, the
meeting ends before that discussion escalates any
further.

Page 36

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

The decision is made. Claes and his organization are
to analyze the marketing requirements and come up
with a plan for development and implementation. His
boss tells him, “Claes, I know that we are stretched
thin but these two items are crucial and have the
backing of the CEO and the board. Look at hiring
consultants if you need but no hiring of employees
beyond the current plan. We do not want to add to
our cost mass. I have all faith in you and your people.”

Understanding the dynamics at play in
the case study
In this section, we will work to understand the
dynamics at play for Claes and his team. We will map
the situation using causal-loop diagrams. If you are
not familiar with causal-loop diagrams, you can read
through the short how-to section.

Claes is starting projects to deliver what the
marketing director requested. One of the reasons it
is so hard to say no is that the perceived benefits are
seen as great and no one at the table understands
the consequences of starting one or more new
projects. Even if Claes, or anyone else on the team,
has an instinctive feeling that they are already
overloaded, it is hard to debate or discuss it without
facts and numbers for consequences. The harder it is
to understand the consequences, the harder it is to
say no to new work, and we cannot understand the
consequences without understanding our current
capacity. You can see this mapped in figure 2 (next
page).

If you continue to add projects in an uncontrolled
manner for long enough, the IT organization will
become overcommitted. It may take some time but it
will happen.

When existing projects get delayed, trust between
IT and the business deteriorates and business
stakeholders will look to take any opportunity to
push their needs on the agenda. This can show up in
the form of requirements forced into projects that
have already gotten clearance to start or, perhaps,
as departments doing skunkworks projects without
IT participation, causing additional work for the IT
department in the form of integration, maintenance,
and security issues.

All of this can be summarized as pressure to accept
more work. Eventually, this will become a reinforcing
loop that keeps heaping pressure on the team to
accept additional work, as figure 3 shows (next page).

One of the actions Claes and his boss can take is to kill
projects that are less important to create space for
projects that are more important. This would lessen
the strain on the IT organization, provide a more even
flow of deliveries from the projects, and allow Claes
to come out on top of the situation. Let’s add that in
figure 4 (page 38).

Unfortunately other dynamics come into play when
Claes wants to kill some existing projects. When
the organization is overcommitted, it usually has
hundreds of projects with a multitude of stakeholders,
making it very difficult to kill a project. Project
champions and stakeholders will want to keep their
projects running in order to get the anticipated
benefits. They will point to other projects and say,
“Find another project to kill because my project is
important.”

Basically, Claes is trying to sell the message “Your
baby is ugly and needs to be closed so someone
else’s baby can be started.” He will not find many
sympathetic listeners. This gives us the “Do not kill
my project” reinforcing loop in figure 5 (page 38). The
more overcommitted our organization is, the harder it
is to pinpoint the right projects to kill in order to bring
us back to a stable execution mode.

Unfortunately, killing a running project will further
tear the trust between IT and business and increase
the pressure on IT to accept new work. So once in
this catch-22 of overcommitment, it is hard for an
organization to get out of the hole.

In summary, the IT organization can be viewed as
a bathtub. When this bathtub overflows, it creates
extra costs and problems and delays delivery of
existing projects. The basic rule is never add more
work than flows out of the organization once you
have reached your capacity.

Figure 6 - IT department as a bathtub.

Page 37

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Figure 1 - How to read causal-loop diagrams.

Figure 2 - Acceptance of new work.

Figure 3 - Increasing pressure to accept more work keeps the organization in a perpetual state of

overcommitment.

Page 38

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Figure 4 - Killing projects to lessen overcommitment problems.

Figure 5 - “Do not kill my project” reinforcing loop.

Page 39

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Resolving the Gordian Knot between
business and IT
A Gordian knot represents a difficult, intractable,
and often insolvable problem, which is exactly
what it feels like in an organization with chronic
overcommitment. But there is hope. Let’s see what
Claes and his boss could do to improve things.

Claes could try to solve his resource issues by
using external suppliers and various workarounds
to provide functionality faster, but none of
these methods addresses the main reasons for
overcommitment. While workarounds may help,
they will only serve to keep the organization in
the catch-22 they find themselves in. Even more
worrisome is that over the long run, performance will
deteriorate since the IT department’s capacity gets
worse and worse over time.

Instead, Claes should apply the following four steps:

Learn to deliver on a small scale.
Isolate some value stream or function where
it’s possible for a team to deliver value without
dependencies on other parts of the organization.
Have the team deliver with quality – accept no
shortcuts or deliveries where the quality is unknown.
Feed the learning of how to organize around a value
stream back to the organization and then slowly
begin to scale up, being careful to avoid unnecessary
dependencies between the value streams. Use agile
and lean practices and principles to improve your
delivery capacity.

Have a clear strategy and live by it.
You cannot kill project #265 without a clear strategy.
By articulating the business vision and priorities
in a concrete manner, with clear, real examples,
people can make the right decisions. Remember that
everyone is prone to overcommitment and that the
job of management is to make sure that the delivery
engine is not overloaded. Create hard limits for
the system and enforce escalation procedures like
requiring CEO-level acceptance before exceeding
those limits for work in progress.

Companies like Volvo and Harley-Davidson have
learned this lesson and created a strategy to deal
with it. At Volvo, the strategy was codified in the
quote “666 is the highway to Hell,” meaning that
they should never do three major projects in parallel
(major projects are called category 6 projects at
Volvo). Similarly, Harley-Davidson made huge

progress by understanding that they could not do
more than one big project per year.

Change your habits around problems.
Normally when a problem occurs, management
rushes in to help solve that problem but often makes
things worse by enforcing more control, status
reporting, and other work that is disconnected from
reality.

By doing what should be the work of the front-line
people, managers lose their strongest card since
their focus shrinks. Once you have ensured that your
people have the needed expertise and any other
resources necessary to solve the problem, make
sure you have a structure through which to share
information about the issue.

Finally, think about the problem’s potential side
effects on the organization, both today and in the
future, and try to answer the following questions.
How could this problem have been detected earlier?
Is there anything in the current system and strategy
that creates this problem? How do we share new
knowledge gained from this problem? Innovation
requires space, so how can we create this space for
our teams so that this problem does not impact us
again?

Create common knowledge.
If you are responsible for the delivery engine in your
organization, you will need to create a common
understanding between all parties so that everyone
understands the strategies and rules of the game.
It is important to create this common ground so
that everyone understands that the decisions and
behavior are optimal for the organization and not
done for local silo optimization.

In conclusion
We have hopefully shown that the problem of
chronic overcommitment is the result of many
patterns and people interacting, and that any
solution to this problem must be applied across
several different layers. As a rule of thumb, though,
until you have a clear understanding of your
organization’s capacity, don’t start any new work
until you’ve closed something old. Our business is not
to start as much as possible, it’s to finish as much as
possible.

I’m as proud of what we don’t do as I am of what we
do. – Steve Jobs

Page 40

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

ABOUT THE AUTHORS
Rolf Häsänen is the founder of Value
at Work and a systems thinker who is
passionate about improvement and
innovation. Combining principles and
methods of systems thinking, lean
product development, design thinking,

and the agile world, Rolf helps people solve complex
business problems and improve their organizations.
Currently, Rolf is working with challenges involved
with large-scale product development and how to
capture and share knowledge across organizational
boundaries and unlock the full potential of team
learning.

Morgan Ahlström combines a broad
experience from several different roles
in IT organizations in many different
industries such as banking, media/
television, automotive, telecom, travel,
fashion, and facilities management.

This has given him a great ability to help his clients
find new solutions to their challenges. For more than
10 years, he has continuously nurtured a strong
interest in agile software development and change
management in organizations and uses these skills to
help his clients develop more effective and efficient
organizations. Today, Morgan is mainly working as
a lean/agile coach, helping individuals, teams, and
organizations implement agile processes.

READ THIS ARTICLE
ONLINE ON InfoQ

http://www.infoq.com/articles/chronic-overcommitment

Page 41

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

Management of Agile Projects

At Agile Cambridge 2012, Tony Willoughby discussed the project manager’s role in
an agile team, focusing on resourcing, cost control, high-level scope management,
risk management, and wider communication with business stakeholders.

His talk started with an introduction of himself
and his topic. An important constraint that Tony
mentioned is the domain in which he presents
his ideas: a commercial organisation that builds
software products for sale rather than a company
building software for internal use. He also stated
that the agile approach the company used was
Scrum.

He stated that his reason for preparing the talk is the
lack of literature on the role of project management
in Scrum and in agile in general. He challenged the
idea that the development team can perform project-
management activities and practices and negate the
need for the role of project manager. He said that the
focus of his talk is the role of the project manager in
an agile project and how one can add value.

He maintains that agile is now a proven approach. It:

•	 Results in better software (fewer defects)
•	 Brings faster results
•	 Meets requirements better
•	 Produces happier teams
•	 Produces happier customers

In his organisation, the adoption of agile was driven
from the bottom up – developers and technical
people who said, “We’re fed up with these waterfall-

type projects where we have to try and do everything
up front and we can’t. Agile is a better way. Let’s try
it.”

Initially, management resisted.

There was quite a lot of resistance from management
at the time because in the commercial world you’re
mostly driven by what your customers want and
customers weren’t at that time ready for it. So there
was quite a lot of work to be done to get…to a way
we could adopt agile and use it.

Now, it’s more the other way, actually. Most
customers at least have heard of agile and I think
it’s a good thing. They don’t necessarily know how
they’re going to use it and what effect it will have on
them but most of them are brought into it in some
form or other. So it’s less of a selling job to be done
now.

He summed up the reasons that agile is better.

First of all, agile encourages better development
techniques. We don’t have to be agile to use things
like continuous integration, test-driven development,
pair programs, and those kinds of things. We don’t
have to be agile to do those but agile certainly

Presentation summary by Shane Hastie

Page 42

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

emphasizes them, and they go hand in hand with it
and they’re certainly good techniques.

So most projects are subject to a lot of uncertainty.
Now, there’s a lot of debate about where this
uncertainty comes from. Some people say, “Well,
software requirements keep changing and therefore
we have to accommodate that.” I think it’s not quite
as straightforward as that. I don’t think that if you
speak to most users during the course of a six-month
project…, they will say the requirements have
changed.

What has changed is the understanding between
you as a development team and your customers
as a set of business users who want something out
of the system but who can’t explain it to you. And,
of course, we all know that the waterfall method,
which expects everyone to understand at the start
what all the requirements are, how the system
should behave, and so on. We all know now that
that is virtually impossible, and agile kind of gives
you an ability to have that journey of discovery of
what the requirements really are.

And it’s partly down to a question of language,
because we all use the same words but I think the
business people will have a different understanding
what those words mean from the developers. So we
can agree on the set of words and the specification
but our understanding of that specification can be
quite different in some very crucial ways, which has
a big effect on the outcome.

Agile gives us a way of getting around that problem
by having developers say, “I’ll just develop a little
bit and show you.” And together we’ll go on that
journey to understanding. And to my mind, I think
that’s really why it works better.

Tony said that not all projects should be agile and
not all activities in projects should be agile. At
times, the customer will refuse to accept an agile
approach, and we may not be able to persuade them
otherwise. Some naturally sequential activities take
time and don’t need adaptation, such as selection of
underlying architecture, infrastructure setup, and
some aspects of UX/creative design.

In many cases, those decisions are made for you by
whom you’ve got in your team or what the customer
expects you to do. But in other cases, you have a
choice about whether to build a piece of software or

to buy it as a package. And those are the difficult
decisions which will have a far-reaching effect on the
rest of the projects and are quite difficult to undo so
you need to think about those in advance…. Buying
hardware and commissioning data centres and all
those kinds of things are pretty conventional types of
waterfall project, especially when you’ve got a long
lead time for certain types of hardware.

He summarised the key roles in a Scrum team.

•	 Business/product owner – the requirements
•	 Scrum master – organisation and tracking
•	 Developers – coding and unit-testing
•	 QA staff – testing
•	 This team should be largely self-regulating

The project manager is conspicuously missing.

Tony listed project-management responsibilities,
incorporating many tasks not recognised in Scrum.

• Resourcing – numbers and correct levels
of skill

• General administration – arranging
meetings, travel, project-management
tool setup

• High-level project planning and tracking –
meeting key customer milestones

• Tracking expenditure and customer billing
• Commercial/legal. Do we have contract

cover?
• Tracking of risks, issues and

dependencies, and escalation where
required

• Quality-control of documentation
• Communication – with customer,

internally and with third parties
• Especially outside the immediate agile

team
• Reporting – internal and external
• None of these is covered by agile

processes
• Some customers claim to be agile but not

many really are
• The project manager provides the

interface between our processes and
theirs

He explained some of these points.

So we have our self-regulating team, most likely in
an organization that is not agile and that is much

Page 43

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

more used to conventional project and management
roles. The project manager has to bridge the gap
between the team and organization.

Most projects have third parties who are delivering
key parts of the solution. Now, managing them is a
pain. It’s often one of the key things that can cause
a project to fail, and somebody has to manage them
and you usually need a project manager to do that.
But on top of that, there are all sorts of things in the
commercial software environment that have to be
done. Have we got the resources or the team that
we need? Have we got the right mix of skills? What
about team holidays and that kind of thing? Do
we have contract cover and commercial cover for
this? Are we being paid? Our job processes do not
normally cover these. And, as I say, it’s made more
difficult by some customers who claim to be agile
but do not actually understand what it means.

About the Scrum master role, Tony explained that in
their organisation they have two roles that provide
leadership and guidance: the technical manager/
architect and the project manager, who share
responsibilities.

Development projects usually have both a project
manager (PM) and a technical manager/technical
architect (TM).

• The TM is usually dedicated full-time to one
project.

• The PM is often running several projects.

• Who acts as the Scrum master?

• Usually, it makes more sense for
this to be the TM, because to be an
effective Scrum master:

• You need to attend every
stand-up (not possible for a
part-time PM).

• You should understand all the
technical details of the work.

• Scrum master is a natural fit
with the TM, if the TM is not too
controlling.

• But the PM may need to assist,
especially with keeping storyboards
up to date, people management, and
customer communication.

Tony elaborated.

We tried various things, and the solution for us
generally was to say the technical managers, the
technical architect ends up as the Scrum master,
for several reasons. Firstly, that person is fully in
the team and so is there all the time. Sometimes the
project manager is part-time. Secondly, I think to
be an effective Scrum master, it helps to be fully in
the technology and so to understand exactly what
everyone in the team is doing, and the technical
manager usually has a better understanding than
the project manager.

But the project manager certainly doesn’t need
to assist in this process. Certainly, if the technical
manager needs help like making sure the team keeps
their stories up to date, updating the backlog and
the burn-down charts and so on, then the project
manager can help with all that.

Expanding on project-manager responsibilities, he
stated that requirements definition is a project-
manager responsibility.

First of all, there are business requirements. What
does the business actually want out of this software,
out of this system? What are their constraints?
They may require that the system must go live by
Christmas. Why must it go live by Christmas? What
are the business drivers behind that? This must be
captured and made clear because the reasons are
important. Maybe there’s a big marketing drive
happening and all the marketing materials have
already been ordered. So there again we have
another clear date.

Another business requirement or constraint might be
that you must work with this specific partner. Why?
Well, we have all sorts of reasons why that partner
needs to be working even though they may not be
ideal. Or we need to use this payment gateway.
Whatever.

Then we come to the user requirements. Now, the
requirements of the users of the system are often
uncovered by a combination of a technical team,
doing stories, and a UX (user experience) team,

Page 44

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

the creative designers. And sometimes the UX team
can really muddy the waters, I’m afraid. They think
they’re doing a good job, but there is a tendency on
the UX side of things to inflate the scope beyond
what was agreed to, and that needs to be managed.
Sometimes it’s good to inflate the scope because they
discover things that were not yet discovered, but
sometimes it gets too focused on something, and that
needs to be managed because in the end we have to
deliver working software. We don’t want to be driven
down sidetracks.

So they need to be managed quite carefully. And
indeed we need to do this as one team, really. So
when the UX team drives out software requirements
from the customer in their own particular ways, we
need to have technical representation there to make
sure that it’s all actually deliverable and makes sense
from another point of view.

And then, of course, we’ve got the usual software
requirements. They are usually captured in user
stories and so on. And sometimes the team will need
help in formulating their stories and making sure
they’re the right size and so on.

Unless you’re going to do everything in a very
software-as-a-service kind of way or platform-as-
a-service, or maybe more, then you’re probably
going to need to define the requirements for and the
constraints of the infrastructure up front and then
put in place a plan to manage those.

The project manager also supports the product
owner.

• The role of product owner is crucial.

• Define the business requirements

• Consult with other business
stakeholders

• Prioritise the product and sprint
backlogs

• Make trade-offs when things
deviate from the plan

• Not all product owners are equally
effective.

• The project manager can help the product
owner to stay on track.

• In extreme cases, the project manager
may become the product owner.

Another role I think that’s often forgotten is the role
of the product owner. The product owner is actually
quite a lonely job, or can be a lonely job in an agile
team. The buck really almost ends up stopping with
the product owner in terms of where they are with
delivering the business requirements. Obviously, the
team behind them will work to do everything. But
they have to decide the prioritization. They can get it
wrong. They can have all sorts of pressures on them
from the business.

So I think the project manager can help the product
owner to explain why things are what they are to
the rest of the business, and help to explain to the
team why the product owner has these particular
constraints and so on, basically supporting them,
helping them with this prioritization, explaining the
role of these trade-offs, and so on. I have worked
in projects where the product owner was very
ineffective. And in that case, the project manager
can sometimes take on this part of that role. I don’t
know if it’s ideal.

He said that scope management should be easier on
an agile project.

We don’t fix the scope. We decide it as we go
along. Some customers take that as a sort of carte
blanche to then change the scope whenever they
feel like it. It’s not a good idea because change
still costs. So if there’s going to be a lot of that, the
project manager can step in there and explain the
consequences of some of these changes, say, “We can
accommodate that change but do you realize what
else they’re going to have to change in the project
or accommodate that?” And if it’s a major change,
I still think it’s probably best to go through some
conventional sort of change-request process just so
the customer knows that there has been a major
change and there are consequences of that in terms
of what they might see.

Tony spoke on project planning and milestones.

So, we have our release planning, sprint planning
and so on. That’s pretty detailed to your progress.
It’s not really what the business is looking for. The

Page 45

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

business probably doesn’t want to know that at
the end of this sprint you’re going to get a certain
increment in features. They’re going to want to know
when they will have to prove the UX design. When
will they have to mobilize people to do the UAT?
When are we going to go live? (They want to know)
those kinds of big dates.

These are all conventional types of dates of the
software project in a conventional approach, but
the business still expects to see them and so project
management can help you with that. Sprints and
a two or three-week… is interesting to the team
because that’s the case to which they work but it’s
not so interesting to business sponsors.

The project manager is also responsible for tracking
and managing issues, risks, and dependencies.

Some people make a big thing about the difference
between an issue and a risk. Okay, there is a
difference. But actually, they’re more similar than
they are different. They can all derail a project.
They’re all time-critical. So someone needs to
manage them. Someone has to be assigned as the
one who is responsible for them. They should need to
be reviewed regularly.

So the project manager can be surfacing these things
to the rest of the team and to the business and
explaining what these issues, these risks are and how
they’re going to be managed, and also dependencies
on third parties – very important. But I would say
that you have to be aware of what I call issue fatigue
here, which is that some project managers decide
that the best way to communicate is to document
every possible risk and issue – always dozens, if not
hundreds – and present them all to the customer
every week. Very quickly, the customer will get issue
fatigue and say, “Well, I can’t handle all those if this
needs to be going. I’ll just ignore them.” So the key is
to prioritize them and just pretend the two or three
that are key need immediate attention.

Then there is the project reporting and tracking.

Project reporting is another boring job that the
project manager has to do, usually writing these
weekly reports. The good thing about working in our
job team is that usually the reports you provide for a
customer are pretty similar to the reports you would
provide to a commercial software company, that you
provide to your own people because there should

really not be many, if any, secrets. You can be open
and share. So if you have problem with resourcing,
as it is a common problem in commercial software
environment, you say, “Yes, we have a problem
with the resourcing. We are trying to work around
that. And when we get this actual person on board,
then we’ll start to catch up.” Make those things clear
rather than pretend there isn’t a problem.

Another area where the project manager is crucial is
when a customer wants a fixed price and scope but
still wants to run the project along agile lines.

The big bugbear is how do we handle a fixed price
project? Quite often, you know – less often now
but it still happens – the customer asks us to run a
fixed-price, fixed-scope, and sometimes fixed-time
project but expects it to be agile. There’s a pretty
big mismatch between those two fundamentally
contradictory approaches. So we found some ways
to resolve this. Ideally, first of all, persuade the
customer that they’re wrongheaded and they need to
be more agile and less prescriptive.

We’ve tried that and sometimes the people you’re
working with say, “Yes, we understand all that.”

And then the procurement department come in
and say, “Sign here in blood. We’re not having
any of that.” So you can’t always get around that
alternative. You could pretend and they’ll pretend to
be agile. Just go back to the old method, which again
is not ideal.

What we found works sometimes is this sort of
hybrid agile approach. We know we expect to deliver
X during this period, but we’re not going to admit
to X because that’s far too risky. So we’ll sign up
to 60% of X. We’ll give you these 10 features. We’ll
guarantee to give you these six but we expect to have
enough to deliver all 10. So we’ll agree to fixed scope
and fixed price. And if we deliver the six features,
we’ll get paid. But we know that actually in order to
keep the customer on board as a satisfied customer,
we actually should endeavour to deliver all 10. We’re
not going to rest on our laurels when we get to six.

That’s worked pretty well because often while we’re
delivering those first six features, we find that other
priorities creep in, or the customer realizes that
maybe some other things are more important to
them and they come to that negotiation and agree.
And then they can see the benefit of working in agile

Page 46

Agile Project Management / eMag Issue 18 - September 2014

CONTENTS

way because we actually can accommodate that
change while we’re still working within a fixed-price
type of approach. So that works. That’s worked quite
well.

Tony presented some ideas on tools and techniques
the project manager can use.

We share information through the project wiki,
those kinds of things, with the customers and the
stakeholders and try to show all of these issues
and risks on a continuous basis if they want to see
them. We generally have a couple of issues logs,
with one for what the project team is working on
at the moment. That would be perhaps a set of
tasks in JIRA or some similar tool and showing the
development logs, as I called it there, showing all the
stories, the tasks, the bugs, etc., arranged on a sprint
basis. So, for the next two weeks we’re going to be
addressing these ones.

And then the project manager’s log, which is the
higher level, maintains the kind of things that the
business people really want to see, which are the
risks, the issues, the milestones, dependencies, any
CLs, and so on…. We’ve used JIRA and looked at
Trello as well as a lightweight way of looking at some
of those. But there are other tools I’m sure. There are
even better tools available.

He summarised his talk.

I hope I’ve managed to convince you that the project
managers are not redundant. In an agile project,
they should be less involved with the day-to-day
task management, because the agile team should
hopefully run itself with a bit of guidance, but more
concerned really with this interface between the
team and the business. Remember, the team – we’re
hoping – is agile, doing things in agile, whereas
the business is not generally agile. The business
really needs to know milestones, what’s going to be
delivered, how much it’s going to cost, all those kind
of things. So the role of the project manager is to try
to span those two different paradigms and make
sure they can work together.

ABOUT THE SPEAKER
Tony Willoughby has been working in IT for

over 20 years in a variety of roles, including

requirements analyst, technical architect, project

and program manager, and account director.

He is employed by KIT digital, an international

company specializing in digital media, where he

has delivered a number of large-scale video-on-

demand projects in the UK and the Middle East.

 WATCH THIS PRESENTATION
ONLINE ON InfoQ

http://www.infoq.com/presentations/Project-Management-Agile

	_GoBack
	_GoBack
	_GoBack
	_GoBack

